共价有机框架材料的设计、合成及CO2捕集、质子传导性能研究

来源 :河南师范大学 | 被引量 : 0次 | 上传用户:zq19900303
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
共价有机框架(COFs)是由有机建构单元通过共价键连接所形成的一类多孔晶型聚合材料,具有长程有序、多孔性高、形态单一、框架稳定等特点。这些特性使得COFs具有广泛的应用,如气体储存和分离、催化、传感以及能量转换和存储等。自2005年Yaghi等人首次合成COFs以来,虽然已有数百种COFs材料被研究人员所开发、利用,但并不是所有的COFs材料均具备良好的性能。为了增强COFs对特定用途的适用性,可通过对其框架进行修饰,从而改善COFs的性能。本文首先按照文献合成了具有稳定结构但性能并不突出的二维β-酮胺类COF—Tp Pa-SO3H,并以此为基础,利用磺酰化反应制备了一系列功能化COFs材料,在对其进行结构表征的基础上,研究了功能化COFs材料在室温常压下对CO2的吸附效果、不同温度下的质子导电性能及光响应行为。经化学修饰后的功能化COFs材料对于CO2的吸附性能、质子传导性能得到了显著提高,且接枝对氨基偶氮苯(AAB)后的Tp Pa-SO3H具有良好的光响应能力。本文主要内容如下:1、利用具有较高氨基密度的聚乙烯亚胺(Polyethylenimine,PEI)对COF—Tp Pa-SO3H进行后修饰,通过磺酰化反应,制备了一系列具有不同PEI接枝量(x=20、30、40、50wt%)和分子量(M=3500、1800、1200、600、300、二乙烯三胺(DETA)及乙醇胺(MEA))的COFs材料—PEIx@Tp Pa-SO3H。利用多种表征手段对所制备的样品进行分析,并测定和对比了化学接枝PEI前后Tp Pa-SO3H在室温常压下对CO2的吸附效果,及吸附CO2前后材料的稳定性和循环性能。2、当相对湿度(Relative humidity,RH)为98%时,对具有良好热稳定性和结构稳定性,且框架中存在丰富氢键网络的PEIx@Tp Pa-SO3H进行了电化学交流阻抗测试。分析了PEIx@Tp Pa-SO3H在不同温度(30-80℃)下的电化学交流阻抗,并进一步对交流阻抗值进行处理,得出了材料的质子电导率,据此分析了PEIx@Tp Pa-SO3H质子传导的活化能大小及质子传导机理。3、利用对氨基偶氮苯(AAB)对Tp Pa-SO3H进行后修饰,通过磺酰化反应,成功制备了具有光响应性能的AAB@Tp Pa-SO3H。通过综合热分析仪、中远红外光谱仪和紫外-可见近红外光谱仪等技术对所合成的AAB@Tp Pa-SO3H结构和性能进行了测定。研究结果表明,AAB@Tp Pa-SO3H经365nm紫外光照射或加热后,表现出良好的可逆性顺反异构化。同时,光控的顺反异构结构对材料比表面积和CO2吸附性能的影响也进一步进行了探究。
其他文献
化石能源过度消费带来的资源短缺以及碳排放引起人类对清洁可再生能源的关注和旺盛需求。由于具有高能量密度和零污染,氢气被认为是理想的燃料,电解水是可持续产氢的方法之一,其过程包括析氢和析氧两个半反应。高活性催化剂在这两个半反应中发挥关键作用,但是,传统的贵金属基催化剂成本高昂、资源稀缺且稳定性不佳,不利于工业规模电解水产氢。开发高效和低成本催化剂是解决问题的突破口。过渡金属-碳基体复合材料接触界面两侧
学位
为了满足当今世界对绿色化学和可持续发展的需求,寻找高效、廉价、低毒的绿色金属应用于化学合成方面的不对称催化领域也就成了化学从业者关注的问题。铁作为绿色金属自然就成了大家关注和研究的对象。本文先是研究了手性Fe-BPsalan络合物催化N-甲基咪唑衍生的α,β-不饱和羰基化合物和2,3-二氢呋喃之间的不对称[4+2]环加成反应。通过对条件的筛选和优化,使用5 mol%的手性Fe-BPsalan络合物
学位
柑橘以其丰富的营养和经济价值,在世界各地广为栽培,并受到广大人民的欢迎。柑橘从播种到首次开花需要经历较长的童年阶段,一般6-8年,这严重阻碍了柑橘的育种进程。FD属于bZIP转录因子家族,可以与“成花素”(FT)形成复合物,该复合物可以通过促进下游开花相关基因的表达从而促进植物开花。在植物中,b HLH类转录因子参与多种生理过程,例如生理代谢、生长发育以及逆境响应等。课题组前期利用CiFD启动子进
学位
非那雄胺,化学名称为N-叔丁基-3-氧代-4-氮杂-5α-雄甾-1-烯-17β-酰胺,是一种4-氮杂甾体化合物,作为一种特异性的II型5α-还原酶抑制剂,对良性前列腺增生具有良好的治疗作用,同时它也是第一个获得批准进入临床并投入市场的5α-还原酶抑制剂。非那雄胺的作用机制主要是可以阻断睾酮转化为活性更高的二氢睾酮(DHT),可以导致体内DHT含量降低,睾酮水平增加或正常,能够改善前列腺增生症状,并
学位
钠离子电池与锂离子电池具有相似的工作原理,制作工艺流程及生产设备可以相互兼容,再加上丰富廉价的钠资源,被认为是下一代最具潜力的化学电源。在钠离子电池体系所有的负极材料中,硬碳负极其能量密度较高、价格低廉,受到研究者的广泛关注。然而,由于硬碳首次库伦效率较低、循环稳定性较差、倍率性能不佳等问题使得其发展受限。而上述缺点可以通过新型电解液的开发得到有效缓解和改善,因此,电解液的适配和优化是钠离子电池的
学位
富含亮氨酸重复(Leucine-rich repeat,LRR)是由一个疏水性亮氨酸残基保守片段和一个高度变异片段组成的短序列,其存在于免疫相关的受体中,例如:LRR-RLKs,RLPs和NLRs。现有预测工具主要基于隐马尔可夫模型、位置特异性矩阵和传统机器学习算法,本研究中我们引入深度学习算法开发了预测LRR结构域的新工具。在本课题研究过程中,我们首先基于重构的LRR单元高度保守片段模式构建了L
学位
氨气的高效吸附分离在能源存储、环境保护等领域具有重要的意义。将离子液体均匀地分散在大比表面积、高稳定性的MOF材料的孔道中,制备出具有多吸附位点和高效吸附性能的稳定性ILs@MOF杂化材料,是提高NH3吸附性能的有效策略。利用离子液体和MOF材料的协同作用,有望显著提高杂化材料对NH3的吸附性能,并实现NH3/CO2混合气体中NH3的高效捕集与分离。本文将与氨作用适中的金属Zn2+引入离子液体中,
学位
马铃薯黄萎病是一种常见的真菌性病害,亦被称为马铃薯早死病,病原菌一旦侵染植株会逐步扩展到各个部位,严重影响其正常生长。目前,现有的杀菌剂均未被发现可有效控制此类病害发生,而对于抗病基因的相关研究也较为匮乏。因此,深入发掘抗性基因并加以利用、加快抗病品种的选育进程将成为其最有效的防治手段,且具有深远的意义。本研究主要利用马铃薯二倍体材料C545和V67为亲本,构建BC1后代分离群体作为后续遗传定位的
学位
苦瓜(Momordica charantia L.2n=2x=22)是葫芦科(Cucurbitaceae)的一年生蔓生草本植物,其营养价值高,兼具保健作用,具有重要的研究意义。苦瓜全雌系作为杂交母本具备增加产量、简化制种程序等优势,苦瓜全雌基因的定位可以为苦瓜育种提供优异的基因资源和筛选标记,有利于加速全雌性转育进程。本课题计划利用新构建的遗传分离群体对全雌位点进行定位,以期筛选可能的候选基因,为
学位
马铃薯(Solanum tuberosum L.)是世界第三大粮食作物,因其粮菜兼用性及丰富的加工用途备受消费者喜爱。由致病疫霉(Phytophthora infestans)引起马铃薯晚疫病是马铃薯头号病害。抗病基因在马铃薯晚疫病抗病育种中发挥着重要作用,聚合多个抗病基因是获得广谱、持久抗性最有效的途径。RB、R8和Rpi-vnt1是三个马铃薯晚疫病广谱、持久抗病基因,利用基因工程聚合这三个基因
学位