论文部分内容阅读
电推进装置以其优越的性能广泛应用于空间飞行任务。脉冲等离子体推力器(Pulsed Plasma Thruster,PPT)是一种比冲高、功耗低、结构简单、重量轻的电磁推力器,可应用于微小卫星的位置保持、姿态控制、编队飞行等任务,成为当前国际上电推进研究的热点之一。通过理论分析、实验研究和数值模拟等多种手段,本文系统研究了平行板电极固体推进剂PPT的工作过程,分析了影响推力器性能的因素,探讨了提高推力器性能的途径。建立了PPT实验系统,包括模拟航天器飞行条件的真空系统、PPT微推力测量系统以及放电参数测量系统等。详细分析了各子系统的技术要求、指标与特性。采用电磁灭甲结构研制了微推力测量装置,解决了PPT研究中推力测量的关键技术问题。采用机电模型对PPT的性能参数进行了预估,针对不同电参数(电容器容量、初始电压、电路电阻、电子温度等)和结构参数(电极间距、电极宽度及推进剂烧蚀剖面高宽比)进行了计算分析,研究了这些参数的变化对推力器性能的影响。研制了一种平行板电极尾部馈送型PPT,在不同工况下对推力器进行了点火实验,测量获得了放电电流和电压波形、脉冲平均烧蚀质量、平均推力等工作参数,计算得到了不同工况下元冲量、比冲、推力效率等性能参数,分析了不同电参数和结构参数对推力器性能的影响。实验研究表明:在相同的放电能量情况下,采用小容量电容器、提高电容器初始电压可以有效提高推力器元冲量、比冲和推力效率;在合理的范围内增加电极长度可以提高推力器元冲量、比冲和推力效率;在相同的放电能量下,降低推进剂烧蚀剖面面积有利于提高比冲和推力效率;对于相同的烧蚀剖面面积,提高推进剂的高宽比,元冲量、比冲和效率都会提高。以局部热力学平衡和等离子体宏观电中性为基本假设,建立了基于磁流体动力学(Magnetohydrodynamic,MHD)的PPT工作过程一维非定常数学模型。模型描述了PPT内部多种重要的物理机制及其相互间的耦合作用,反映了对流和扩散产生的物质、能量和动量的输运、洛伦兹力的作用及欧姆加热、磁场扩散等物理过程。对理想MHD方程进行了特征分析,推导了其特征矩阵,采用二阶MacCormack显式格式对带欧姆加热源项的MHD方程组进行了求解。数值计算表明:电离气体主要来自于脉冲前期,经洛伦兹力加速后获得高的喷射速度,是推力的主要来源;在一次脉冲周期内,推力器放电结束后,推进剂烧蚀表面温度较长时间仍处在Teflon分解温度之上,导致推进剂的滞后蒸发,是PPT推进剂的利用效率及推力效率低的主要原因。