【摘 要】
:
随着物联网的迅速发展,射频能量采集技术的应用范围也逐步扩大。作为射频能量采集系统中的能量接收和转换器件,整流天线在系统中发挥着重要的作用。整流天线的一个研究方向是在有限的功率密度环境下尽可能地吸收更多能量以提高能量转换效率。实际的能量采集过程中,天线的辐射方向、极化方式以及与整流电路的合并方式等都制约着能量采集系统的接收能力。本文设计了极化可重构全向圆极化天线,通过切换极化方式在辐射范围内提高天线
论文部分内容阅读
随着物联网的迅速发展,射频能量采集技术的应用范围也逐步扩大。作为射频能量采集系统中的能量接收和转换器件,整流天线在系统中发挥着重要的作用。整流天线的一个研究方向是在有限的功率密度环境下尽可能地吸收更多能量以提高能量转换效率。实际的能量采集过程中,天线的辐射方向、极化方式以及与整流电路的合并方式等都制约着能量采集系统的接收能力。本文设计了极化可重构全向圆极化天线,通过切换极化方式在辐射范围内提高天线的能量接收能力。并设计了全向垂直极化整流阵列和全向双极化整流天线阵列,讨论了通过加入功率分配网络来稳定采集系统整流效率的可能性。最后通过最大功率传输效率法优化馈电网络并增加寄生基板来提升收发天线阵列间的能量传输效率。本文的主要工作包含:1.本文介绍了一种低剖面极化可重构全向圆极化天线。天线主要由一个单极子天线和一个1×4偶极子阵列组成。通过设计可重构馈电网络来激励这两部分子天线可产生左右旋可切换的全向圆极化波。设计的馈电网络主要由一单刀双掷开关电路和一紧凑二阶3dB耦合器组成,从而可输出幅度相等、相位差可在±90°间切换的两路信号。将馈电网络的两输出端口分别与水平极化的偶极子阵列天线和垂直极化的单极子天线相连,便可使天线在左旋圆极化(LHCP)和右旋圆极化(RHCP)两种辐射状态之间切换。测试结果表明,该天线在左右旋圆极化状态下的阻抗带宽(|S11|<-10 dB)分别为21.5%(2.24-2.78GHz)和19.4%(2.32-2.81 GHz)。全向左右旋圆极化状态的重叠轴比带宽(AR<3dB)约7%(2.44-2.62 GHz)。天线的最高增益为-0.9dBic,水平面增益波动小于1.3dB。2.本文提出了两种工作在2.45GHz用于射频能量采集的整流天线阵列。两种天线阵列分别是高增益的全向垂直极化整流天线阵列和垂直水平双极化的全向整流天线阵列。在入射波方向不确定和入射波方向、极化角不确定的情况下分别讨论,通过添加功率分配网络来稳定射频能量采集系统的整流效率。仿真和测试验证了均分各整流器的输入能量对系统整流效率有稳定的作用。3.本文优化了16×16收发天线阵列,实现了阵列传输效率的提升。通过最大功率传输效率法将原阵列中等幅同相的馈电网络重新优化设计。在仿真与实测中,原天线阵列的传输效率为22.7%。经过网络优化后,在3m的传输距离下,实测的天线阵列传输效率可达到25.4%。
其他文献
上世纪60年代兴起的气象卫星是气象探测研究和业务中的重要突破,其提供的连续的高时空分辨率云图数据是以往常规探测技术无法比拟的。卫星云图可以作为日常天气分析和预报辅助工具,对于卫星云图的解译和使用,是天气预报工作不可分割的组成部分。当前气象卫星云图研究和应用中目视判读仍是主要手段之一,主观因素导致无法完全提取和最大化利用卫星云图中的有效信息,并且妨碍了定量化和自动化预报的发展。随着国产气象卫星技术的
随着大数据时代的到来,图像、视频等大量高维数据在获取、存储的过程中,不可避免地出现获取的数据是残缺不全的、含有大量噪声等现象,这会使数据的分析受到极大的影响,如何将残缺的数据补全或者从噪声中恢复干净的数据成为了数据处理的重要问题。近年来,低秩模型引起了学术界的广泛关注。由于图像、视频等高维数据的内部结构、前后帧之间往往有较强的相关性,可以在低维空间对其进行表示,因此基于低秩学习的张量补全和恢复的模
腺癌是一种常发生于上皮腺体组织的癌症类型,在结直肠癌、前列腺癌、乳腺癌、肺癌等多种恶性肿瘤中都十分常见。在病理形态上,腺癌的发生往往伴随着腺体结构分化变差甚至不分化,即腺体组织呈现出异常变形扭曲、内部空腔结构被细胞核侵占致其缩小甚至消失。这种不同程度的腺体分化直接与腺癌的恶性程度相关联。因此,在临床病理诊断中,腺体组织结构的分化程度是病理学家确定腺癌等级乃至决策治疗方案的决定性因素。为了实现腺癌恶
2D人体姿态估计的研究目标是准确检测并定位图片中人体的所有关键点,例如,膝盖,脚踝等,是当前计算机视觉领域的一个研究热点。近年来,尽管基于深度学习的人体姿态估计模型取得了较大进展,但大多数工作均聚焦于人体关键点的检测,忽视了肢体之间的关联。鉴于人体物理结构的整体性质,本文从关键点的相关性来建模学习人体姿态估计特征,主要研究工作如下:(1)提出基于期望最大化的人体姿态估计网络(Expectation
乳腺癌是女性发病率和死亡率最高的恶性肿瘤,新辅助化疗是治疗乳腺癌的有效手段,有利于缩小肿瘤、降低肿瘤分期,将无法手术的肿瘤转化成可手术的肿瘤,提高患者无病生存率。临床医生根据自身经验以及患者的分子分型预估患者是否需要进行新辅助化疗,主观性较强且无法针对单一患者准确预测其化疗后的病理缓解程度,易导致化疗无效后患者错过最佳治疗时机。因此,本文旨在利用计算机图像处理技术对乳腺癌患者新辅助化疗前的全景穿刺
图像复原技术随着数字技术的发展,已被广泛应用于多个领域,是图像处理领域中一个重要的研究方向。传统图像复原方法如逆滤波法、维纳滤波法、最小二乘法等难以解决函数逼近问题,难以应用于复杂场景。本文主要使用生成对抗网络实现图像超分辨率重建和图像修复两方面的复原任务。图像超分辨率重建在预处理时会出现丢失部分图像重要的高频细节,重建图像过于光滑以及网络模型训练不稳定等问题。图像修复过程中存在受伪像影响、修复结
视觉目标跟踪(Visual Object Tracking)旨在对视频任意目标进行轨迹追踪,是计算机视觉领域中基础研究方向。目标跟踪技术在自动驾驶、机器视觉、智能监控、军事国防等领域得到了广泛应用。深度学习技术的发展大幅提高了目标跟踪算法的性能,但在应对相似目标干扰、非刚性形变、尺度变化剧烈挑战时,依然存在鲁棒性差、准确性低的难题,无法满足实际应用场景的需求。本文基于深度学习技术,提出两种基于多任
自动调制分类(Automatic Modulation Classification,AMC)是信号解调前一个复杂且重要的技术,它在军事领域和民用领域都有广泛的应用。近年来,由于机器学习算法的引入,使得AMC技术备受关注。基于机器学习的AMC算法相比于传统算法有更高的识别精度和鲁棒性。本文深入研究并做了以下几方面的工作:1.针对复杂信道情况下,由于调制信号受噪声干扰导致识别准确率不高的问题,提出基
正确判断脑部神经胶质瘤基因型是突变还是野生类型,将有助于医生做出正确的预后治疗。针对活体组织检查会对患者造成一定的伤害、人工观察核磁共振图像准确率低的情况,本文借助计算机辅助的方式对神经胶质瘤进行判断。本文以神经胶质瘤分型为目的,多序列核磁共振图像为数据基础,深度学习为方法,从预处理到肿瘤分型分别提出了不同的深度学习网络结构。本文的创新性工作包括以下内容:(1)针对预处理时,3D Slicer等软
第五代(The Fifth Generation,5G)通信系统采用更先进的通信技术对5G信道建模提出了更高的要求。在无线信道建模的研究领域中,最大的挑战是建立有效且准确的信道模型,能够模拟影响无线通信系统性能分析的所有传播特性。车对车(Vehicle-to-Vehicle,V2V)信道建模作为5G信道建模研究的热点之一,越来越受到研究人员的关注。在V2V通信场景中,发送端(Transmitter