论文部分内容阅读
随着服装行业的发展,中国男装行业已经成为服装业重要的一部分,也是竞争较为激烈的一部分。要想在竞争中处于有利的地位,必须了解市场需求,把握先机,这就需要对男装未来的销售情况做出准确的预测。传统的基于经验判断和市场调研分析的服装销售预测,缺乏科学根据,考虑的因素也相对简单,无法使预测结果精确化。论文从单一预测模型和组合预测模型两方面,对服装销售预测技术进行了研究。论文从分析服装销售数据的特点入手,在综述数据预测相关理论与技术的基础上,研究了基于单一模型的销售数据预测。针对服装销售数据的线性特征,论文利用ARIMA模型对男装销售数据进行了预测;针对服装销售数据的非线性特征,论文利用神经网络模型对男装销售数据进行了预测。服装销售数据存在有趋势的线性特征,又因其受包括品牌、流行因素、价格、季节等因素的影响,也存在非线性特征。单一预测模型具有一定的局限性,论文进一步研究基于加权组合预测模型的相关预测技术。通过实验分析,确定采用最优权重法作为计算组合预测模型各部分权重的方法。利用实际数据,对不同模型的三种组合,进行了预测分析,结果表明ARIMA-BP-RBF组合模型具有最优的预测准确率。具体来讲,论文包括以下工作。(1)综述了服装销售数据预测的研究现状,通过对某商家实际销售数据的分析,总结了男装销售数据存在的线性和非线性特征。通过数据聚合、有效性筛选、缺失值及异常值处理等方法,获得了高质量的数据,为论文数据预测工作做了准备。(2)研究了基于ARIMA单一模型的服装销售数据预测。结合男装销售数据的特点,分析了ARIMA建模过程,采用差分处理将非平稳状态的数据转换为平稳状态,并通过模式识别及检验确定了模型参数。实验表明ARIMA模型对数据线性部分预测准确,对整体男装销售数据预测还存在不足。(3)研究了基于神经网络单一模型的服装销售数据预测。结合男装销售数据的非线性特征,分析了BP神经网络和RBF神经网络建模过程。通过对各种传递函数特点的分析,确定Sigmoid函数适用于BP神经网络模型,高斯函数适用于RBF神经网络模型。并通过对神经网络模型原理的分析,确定了神经网络各层节点个数,并对样本数据进行训练及测试。实验表明BP神经网络模型和RBF神经网络模型对数据非线性部分预测准确,由于数据存在线性部分,所以对整体男装销售数据预测还存在不足。(4)研究了ARIMA和神经网络组合模型的服装销售数据预测技术。通过对多种加权组合方法实验分析,确定采用最优权重法作为计算组合模型各部分权重的方法。采用最优权重法构建了ARIMA-BP组合模型、ARIAM-RBF组合模型、以及ARIMA-BP-RBF组合模型,并通过实验数据分析,确定ARIMA-BP-RBF组合模型最适用于男装销售预测。