论文部分内容阅读
从实验室成功制备出以来,石墨烯以其特殊的线性能带结构和优异的电学、热学、光学与机械性能,成为了当今世界的科技前沿和研究焦点。它被认为是未来集成电路的替代材料,在可控、大规模生产石墨烯基器件的制造方面具有巨大的潜力,能够实现工艺制程向“埃”的数量级过渡。石墨烯在物理学和电学方面的应用上,可能会表现出很多惊人的结果,但目前这些应用只能通过石墨烯纳米带或纳米线等其他纳米结构才能实现。因此,我们必须找到一种可靠的方法,能够在可控的情况下产生有特定尺寸、几何形状和特定晶向边缘的石墨烯纳米结构。由于石墨烯是一种超薄的二维纳米材料,对石墨烯进行刻蚀是最好的途径。干法等离子体刻蚀技术是微电子领域中图案转移的基本工艺,也是石墨烯刻蚀的常用工艺,可以实现石墨烯的各向异性刻蚀,同时也可以对石墨烯的边缘的手性进行控制。目前,对石墨烯进行刻蚀的等离子体源通常是电容耦合等离子体(CCP)和电感耦合等离子体(ICP),采用高密度、能量可控的微波电子回旋共振等离子体(微波ECR等离子体)刻蚀石墨烯还没有相关的研究。此外,现有的等离子体刻蚀石墨烯工艺中,所使用的刻蚀气体较为单一,不利于多种环境中的应用。相比于少层石墨烯,对于单层石墨烯的刻蚀要求更高。本论文研究微波ECR等离子体对单层石墨烯的刻蚀特性,主要进行不同气体对石墨烯刻蚀特性的研究,包括H2、N2、O2和Ar及其混合气体对单层石墨烯的刻蚀速率、刻蚀各向异性、刻蚀表面及基底的平整度的影响,以期获得精准、刻蚀各向异性程度高的单层石墨烯刻蚀。论文得出的结论如下:(1)微波ECR等离子体更有利于单层石墨烯的刻蚀。微波ECR等离子体中离子的能量小于30eV,因而对样品的损伤较小。通过调节偏压射频电源功率、基片台高度等,控制等离子体能量,可以很好的控制石墨烯的刻蚀位点,使石墨烯出现选择性刻蚀。(2)H2等离子体各向异性刻蚀石墨烯。通过对放电参数的调节,可以在较大的范围内调节H2等离子体对石墨烯的刻蚀速率,这非常适于石墨烯的图案化,满足多种环境和刻蚀要求。(3)微波ECR N2等离子体对石墨烯基本不发生刻蚀。N2等离子体对石墨烯基本没有发生任何损伤,这有利于石墨烯保持平整。(4)O2等离子体对石墨烯的刻蚀为各向同性刻蚀,且在微波ECR等离子体环境中,O2等离子体对石墨烯的刻蚀速率很大,可发生多个位点的刻蚀。在O2中混合一定比例的Ar气体,可以实现石墨烯刻蚀速率的控制。(5)H2/N2混合气体、H2/Ar混合气体都适于石墨烯的可控刻蚀,对基底SiO2也损伤很小。