论文部分内容阅读
随着通信技术的发展,信息时代的到来,人们越来越认识到信息安全的重要作用。同时随机数发生器作为信息安全传输过程中的重要环节也越来越受到人们的普遍关注。随机数发生器能够产生的不可预知、不可重复的随机数序列对信息加密起到至关重要的作用。基于香农信息理论,为了保证通讯的绝对安全,高速率、不可预测且随机性良好的随机数发生器具有重大的研究价值。目前普遍的随机数设计方案大致可分为两大类:伪随机数发生器和物理随机数发生器。伪随机数发生器设计方案主要由初始种子和确定性算法构成,初始种子经确定性算法多次迭代后变得不可预知。确定性算法越复杂,所产生的伪随机数序列质量越好。但由于其本质的确定性和其产生序列的固定周期性,使其在保密通信领域应用受到限制。物理随机数发生器设计方案则是利用自然界中天然噪声,如热噪声、抖动噪声等彻底消除伪随机数发生器周期性问题,这对于对随机数质量有特定要求的应用领域具有重要意义。且由于物理噪声源天生的不可预测性,使其发展前景极其广阔。常见物理随机数发生器设计方案有热噪声放大法、振荡采样法、混沌电路、亚稳态和量子效应等,各方案均有其优缺点。噪声放大法产生随机数方案结构简单、易实现,但因其需要将微弱噪声放大,需要较大功放,因此在集成化方面功耗较高;振荡采样法方案在实际设计中,实际振荡器时序抖动往往不足,仅通过对熵源的采样很难得到分布性能良好的随机数序列,往往需要另加措施增大振荡器时序抖动或采取后处理措施改善其分布特性。亚稳态设计方案中,产生的随机数序列对电源噪声、温度漂移和工艺的依赖性较大,微小的差异即可对亚稳态电路产生较大影响,因此一般需要复杂的反馈调节电路来对随机数发生器电路进行纠正,这将引入更加复杂的影响。本文采用基于逻辑门布尔混沌采样法设计了一款高性能物理随机数发生器,利用实际逻辑器件的非理想特性,产生了带宽约800 MHz的布尔混沌,利用Cadence软件进行原理图与芯片版图的设计,并对其进行仿真与随机数质量测试,结果表明该设计能够产生随机性能良好的随机数。本文围绕布尔混沌随机数发生器芯片进行了一下研究与设计:1、以简单逻辑门电路为节点构成布尔混沌电路,在FPGA中测试其电路特性,理论分析其熵源的动态特性和其产生随机数质量。2、选择产生随机数质量良好的随机数电路方案,在Cadence软件中完成相对应电路图与版图设计,并对其进行仿真分析,采集所产生随机数序列进行随机数质量测试。