论文部分内容阅读
能源问题是现在人类社会面临的关键问题之一,太阳能作为清洁能源具有广阔的发展和应用前景。太阳能电池是一种将太阳能直接转化为电能的器件,应用十分广泛。有机无机杂化钙钛矿材料由于其高吸收系数,直接带隙,高载流子迁移率和长扩散长度等优点引起了国内外学术界的广泛关注。短短的十年间,有机无机杂化钙钛矿太阳能电池(PSCs)效率从3.8%提高到了23.7%,其效率提升之快是其它太阳能电池无法比拟的。PSCs通常是由空穴传输层(HTL),钙钛矿吸光层和电子传输层(ETL)组成。对于一个高效率的PSCs来说,HTL是必不可少的一部分。在传统的钙钛矿太阳能电池中,Spiro-OMeTAD、PTAA、PANI等有机小分子材料和高分子聚合物通常被用作空穴传输材料(HTM)。但是这些材料制备复杂,价格昂贵,而且一些吸湿性的添加剂的掺杂也降低了电池的稳定性,严重影响了电池的发展。为了解决这些问题,一些低成本,高稳定性的无机空穴材料也逐渐的被广泛研究。CuInSe2(CISe)是一种常见的Cu基黄铜矿半导体材料,由于其具有高吸收系数、可调带隙、低毒性、制备简单、成本低等优点经常被用作吸收材料,广泛的应用在量子点敏化太阳能电池中,但是至今还没有报道过将CISe量子点单独作为无机空穴传输材料应用到PSCs中,而且合成CISe量子点大多使用溶剂热法,油胺溶剂的大量使用使得量子表面包裹有绝缘的有机长链,降低了量子点的导电性,严重影响了量子点的光电性能。所以在本论文中我们将CISe量子点作为空穴传输材料应用到PSCs中,并且将量子点表面的有机长链配体替换成短链,提高量子点的导电性,从而提高电池的光电性能。基于此,具体研究了以下两部分:(1)首先用热注入法合成颗粒尺寸单一,分散性良好的CISe量子点,然后将CISe量子点作为无机空穴传输材料应用到平面结构SnO2/Perovskite/HTM/Au的PSCs中,并且取得了12.8%的效率,这是目前为止以Cu基黄铜矿半导体为空穴传输材料的PSCs得到的最高效率。最重要的一点,与常用的有机空穴传输材料Spiro-OMeTAD相比,CISe量子点作为无机空穴传输材料,不仅能够降低电池成本,而且大幅度地提高了PSCs的稳定性。在没有任何封装,湿度为30%-50%的环境中以小分子材料Spiro-OMeTAD为有机空穴传输层的PSCs的平均效率在5天内降到了原来的30%,在相同的环境下以无机材料CISe量子点为空穴传输层的电池的效率仍能保持到原来的75%。这些结果都证明了CISe量子点是一种有前途的无机空穴传输材料。(2)CISe量子点表面的有机长链会影响空穴传输,我们使用双功能分子3-巯基丙酸(MPA)将量子点表面的有机长链配体交换成短链配体,既不影响量子点的分散又提高了量子点的导电性。将它应用到反型p-i-n结构的PSCs中,通过一系列的表征发现配体交换后量子点薄膜的光透过率得到了提升,增加了钙钛矿吸光层对光的吸收,并且配体交换后的量子点作为空穴传输层提高了电池空穴的注入与传输,也有效的抑制了电池内部载流子的复合,提高了电池的性能。配体交换后,PSCs的光电转换效率由原来的7.18%提高到了8.59%,提高了19.6个百分点。综上所述,量子点配体交换应用到PSCs上,有效地改善了电池的性能。