论文部分内容阅读
铅是一种生物蓄积性强、毒性持久的重金属,严重威胁人类健康和生态环境安全。解磷微生物可通过溶解难溶性磷与铅形成沉淀、分泌代谢产物与铅发生络合、改变铅形态等过程钝化铅。然而,单一的微生物修复技术存在微生物活性差、修复效率低等局限性。研究表明,微生物联合铁基材料是一种高效且生态环保的修复措施。因此,本研究以污染程度较为严重的重金属铅为研究对象,将解磷菌与铁基材料相结合用于铅污染土壤的修复,并系统解析了其钝化机制。主要研究结果如下:首先从重金属污染土壤中分离出解磷微生物,研究了不同解磷微生物的解磷能力及其对重金属的耐受程度,筛选了9株具有高铅抗性的解磷微生物,鉴定结果为4株非脱羧勒克菌、1株恶臭假单胞杆菌、3株黑曲霉和1株粒状青霉,其中铅对非脱羧勒克菌株L1-5(Leclercia adecarboxylata L1-5)的最小抑制浓度为8 mmol/L,且该菌株具有稳定的解磷能力,因此将其作为后续研究的主要菌株。此外,解磷细菌分泌的有机酸以乙酸为主,而解磷真菌以分泌葡萄糖酸为主,且分泌量远远高于解磷细菌。为了进一步明确解磷菌对铅胁迫的响应规律及对铅的钝化机制,从解磷能力、有机酸和磷酸酶分泌能力、胞外聚合物含量变化等方面探究了铅胁迫对解磷菌生长代谢的影响,并且探究了非脱羧勒克菌株L1-5的三层胞外聚合物对铅的钝化机理。结果表明铅胁迫会抑制非脱羧勒克菌的生长,导致体系可溶性磷含量降低,同时菌株分泌有机酸的种类和含量受到极大影响,柠檬酸和丁二酸的分泌量降低,酸性磷酸酶活性增强。铅胁迫下,各层胞外聚合物的分泌量也出现了不同程度增多或减少;菌体与铅溶液反应后,90%以上的铅离子主要分布在溶解性胞外聚合物中,而对于分离胞外聚合物后的菌体而言,其对Pb2+的钝化量仅占到5%;胞外沉淀、络合作用、静电吸附是解磷菌及胞外聚合物钝化铅离子的主要机制。针对解磷菌修复铅污染过程中活性受限问题,开展了以聚乙烯醇和海藻酸钠为包覆材料,以生物炭载零价铁为强化材料的固定化解磷菌小球的制备研究,并对影响材料性能的各种因素进行了条件优化,探讨了固定化解磷菌小球对土壤铅的钝化机制。制备的固定化解磷菌小球在铅胁迫下依然具有较好的解磷能力,当固定化解磷菌小球投加量为5%,初始铅离子浓度为1 mmol/L、初始p H为5、反应温度为30°C时,对铅离子的钝化率可达93%,并且其表面官能团羧基、羟基、酰氨基为吸附铅离子提供了位点,铅离子被转化为Pb5(PO4)3OH和Pb5(PO4)3Cl两种稳定的化合物。此外,固定化解磷菌小球模拟土壤修复实验表明菌群竞争作用使得假单胞菌属(Pseudomonas)、鞘氨醇单胞菌属(Sphingomonas)和海洋菌属(Pontibacter)等成为优势菌群,土壤残渣态铅含量增加了64.85%,弱酸态铅含量也有少量增加,主要是因为土壤中可供释放的磷源不足所致。最后针对固定化解磷菌小球修复土壤铅污染时,土壤磷源不足的问题,开展了铁基含磷纳米材料的制备及性能优化研究,构建了解磷菌协同铁基含磷纳米材料修复体系,并进行了模拟土壤铅污染修复实验,探究了该体系对土壤铅形态转化的影响规律,并揭示了钝化机理。本研究所制备的铁基含磷纳米材料nZVI@C/P1呈核壳结构,其主要成分为nZVI、C、Fe4(P2O7)3和Fe3(PO4)2,该材料在酸性条件(p H=3~5)和较高的温度下(37°C)与解磷菌联合使用,均对Pb2+具有较高的钝化效率,最高可达100%。模拟土壤修复实验表明接种的非脱羧勒克菌株L1-5成为了优势种群,土壤残渣态铅从2%增加到了33%,并且可通过强化铁基含磷纳米材料中磷素释放,促进Pb10(PO4)6(OH)2、Ca2Pb8(PO4)6(OH)2和Pb5(PO4)3Cl的形成。毒性浸出实验中,解磷菌协同nZVI@C/P1修复后的土壤,浸出铅比空白降低了16.62%。由实验结果综合可知,该协同体系实现了高效钝化铅的目的,为土壤铅污染的修复提供了全新的途径。