以麦羟硅钠石为模板的氮掺杂纳米碳材料的制备、结构与应用研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:snakegmj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经异质元素掺杂改性的碳材料具备良好的电子和化学性质,在传感检测、水处理等领域有着广泛应用。近年来,研究者不断报道了石墨烯、多孔碳、碳纳米管、纳米纤维以及富勒烯等碳材料的掺杂方法及应用。但这些制备方法存在步骤复杂、掺杂量低、不稳定等缺陷。本文采用硬模板法,选取成本低廉、来源广泛的麦羟硅钠石(MAG)作为模板、吡咯单体作为碳源和氮源一步合成前驱体,用于制备氮掺杂纳米碳材料,步骤简单,制备的氮掺杂纳米碳材料(CP)在传感检测和染料吸附中都表现出了优异的性能。以实验室自制的MAG为模板,吡咯为初始碳源和氮源,采用硬模板法制备了一种氮掺杂纳米碳材料,并优化工艺条件,对其进行了测试表征。通过XRD、FTIR、BET表征发现,模板法成功制备了氮掺杂纳米碳材料,煅烧和刻蚀的过程使模板有效发挥了隔离作用,并最终被去除。其中模板剂的加入有效增大了材料的比表面积,使氮掺杂纳米碳材料的比表面积达到308.74 m~2/g,较未加入模板剂MAG的对照组提高了29.56倍,孔容增加23.35倍。通过调控前驱体的制备条件、煅烧温度、改变干燥方式,确定了MAG模板法制备氮掺杂纳米碳材料的最佳工艺。煅烧温度为600℃时N元素掺杂量约为7.22%。CP氮掺杂纳米碳材料具有典型的类过氧化物酶活性,相较于天然HRP活性受p H和温度限制很大的缺陷,CP氮掺杂纳米碳材料的类酶活性在强酸、高温等极端恶劣的条件下都保持了较高的催化活性,使其具有了广泛应用和稳定储存的潜力。对其催化机理的研究表明,CP材料的类过氧化物酶活性来源于其高比表面积和稳定的负电性,反应动力学数据符合典型的Michaelis-Menten模型,对其关键参数的计算表明其对底物的亲和力比天然酶更高、类过氧化物酶活性更好。将其应用于特定物质的含量检测,可根据线性范围确定基于CP检测H2O2、葡萄糖和抗坏血酸的检测范围、检测限。本文还将CP氮掺杂纳米碳材料用于刚果红染料废水的处理,结果表明,其最大吸附量可达558.97mg/g。吸附CR的过程可由准二级动力学方程、Langmuir热力学模型描述,属于自发吸附过程,且为吸热反应,CP吸附剂吸附CR的反应遵循单层化学吸附的规律,其高吸附量来源于高比表面积和材料表面掺杂后丰富的官能团。本文不仅提供了一种新颖的利用模板法制备形貌可调控的氮掺杂碳材料的方法,也为其他异质元素掺杂碳材料的制备提供了一种思路。对研发基于氮掺杂纳米碳的化学传感检测器和新型吸附剂都具有参考意义。
其他文献
土壤中重金属污染普遍存在,如何高效安全地修复污染土壤是人类面临的一个紧迫的环境问题。以蒸腾原理为指导依据的植物仿生修复技术具有原位适用性强、成本低及可处理高浓度污染土壤的优点,是一项新型重金属污染土壤修复技术,前景极为广阔。本文采用冷冻干燥法和固相烧结法制备有序多孔陶瓷,探讨了温度梯度、固含量、分散介质组成及比例对有序孔结构的作用,并采用SEM、CT、压汞等手段对孔结构进行表征;同时优选可模拟叶片
肠道微生物群与人类健康之间的关系越来越被人们所认识,研究表明膳食纤维的摄入能够调节微生物群落的组成和代谢功能从而对人类健康发挥重要的作用。杂豆是膳食纤维的丰富食物来源,主要是来自细胞壁的非淀粉多糖。既往研究发现,根据人类肠型对个体进行分层可能有助于预测对饮食的反应。本课题以杂豆为原料提取纯化杂豆子叶细胞壁多糖,首先通过三位志愿者的混合粪便菌群体外酵解,探究杂豆细胞壁多糖的发酵特性及其对肠道菌群的影
近年来随着电子通讯行业的迅速发展,满足小型化、集成化、多功能化、大功率化需求的一体成型电感成为研究热点。FeSiCr合金粉因具有优异的饱和磁化强度、直流偏置和机械性能,是一体成型电感用粉的理想材料之一,但其低电阻率导致所制备的软磁复合材料在中高频下的应用受限。由于磁粉芯的绝缘包覆工艺同样适用于一体成型电感,因此本文以一体成型电感用FeSiCr合金粉作为研究对象,利用SiO2高电阻率的特性,分别采用
阴影在我们生活中处处存在,最常见的莫过于在晴朗天气因树木建筑物遮挡等产生的随处可见的阴影。阴影虽然说能够提升整个图片的立体感,但另一方面阴影在计算机系统中同时可能也会带来一些不必要的问题,如会使得目标检测以及目标追踪的性能下降。阴影因为存在强度不确定、形状不确定以及背景内容也复杂多样等问题使得去阴影问题较为复杂;但另一方面,在很多时候的同一场景中,光照强度在同一阴影下又是统一的,同时,在非阴影区域
深度烧伤和糖尿病溃疡、压力溃疡、静脉溃疡等难愈合型伤口一直以来都受到医学领域研究人员的广泛关注,而制造一种可以恢复皮肤组织功能的有效材料也是一项亟待解决的难题。近年来,静电纺丝技术是一项可制备结构和功能上模仿细胞外基质支架的重要技术之一,制备得到的纤维材料能支持细胞的生长、增殖、迁移和分化,具有成为皮肤等效物的潜力。静电纺丝和静电喷雾是原理相通的两项技术,基于这两项技术工艺的多功能性和参数灵活可调
伤口的快速有效闭合是临床上面临的重要问题。传统的缝线缝合耗时长,后续拆除对伤口造成二次创伤较大。为了提高伤口闭合效率,组织粘合剂作为替代处理方法日渐发展。目前的商用组织粘合剂中,生物类粘合剂难以平衡材料的力学性能和粘合效果,化学类粘合剂又常具有难以降解和安全性低的限制。贻贝蛋白具有优良的生物相容性和组织粘附能力,其中的邻苯二酚基团是其粘附性能的主要来源。非共价键自组装的主客体交联水凝胶具有制备简单
随着人口老龄化加剧与生活方式的改变,眼底疾病变得越来越普遍。由于获取眼底图像的安全性和成本效益,眼底图片被广泛适用于眼科疾病的筛查与诊断。为了更好的诊断,高分辨率眼底图像是必不可少的。然而,获取高分辨率眼底图像对于硬件设备要求往往比较高。因此,利用超分辨率技术提高眼底图像分辨率是一个不错选择。近年来,利用深度学习来解决医学图像超分辨率成为研究热点。本文针对于基于深度学习的超分辨率算法的现有问题,从
随着城市空间的进一步开发,市政道路与大型综合体建筑物合建的复合体系愈来愈多地出现,市政道路疾驰的汽车带来了振动、噪声超限等问题,同时汽车的低频振动对人体舒适度产生了不可忽视的影响,因此合建建筑物体系采用减隔振措施势在必行。本文以广州市番禺区万博商务中心核心区万惠一路与地下空间合建建筑为工程背景,通过数值模拟与现场振动测试,对汽车荷载作用下的结构耦合振动、浮置板道路的隔振性能及车辆荷载作用下的振动舒
脂环族环氧树脂(CAE)采用光-热双固化技术进行固化,光聚合阶段快速固化和后加热固化可提高制品质量,最终获得机械性能高、电绝缘性能好和黏接性能佳的环氧树脂材料。但是所得的脂环族环氧树脂固化物因为高度交联的三维网络结构,通常呈现较差的韧性,以及树脂基体自身的低导热性缺陷,这两方面的不足都引起了研究者们的重视。本课题针对脂环族环氧树脂的易脆性和低导热性,采用纳米纤维素和氮化硼纳米片对其改性并进行了系统
随着微电网技术的不断发展,多个邻近的微电网接入同一配电区域形成多微网系统,有利于提高系统整体运行的稳定性和经济性。同时,为提高用能效率,推广能源梯级利用,微电网的供能形式也从传统的单一的电能逐渐发展成为冷热电等多能源形式。因此,多微网系统能量优化调度策略成为当前研究的重点。相对于单个微电网,多微网具有利益主体多样化的特点,多微网系统运营主体和子微网主体作为不同的利益主体,享有一定的自主调度权,在优