【摘 要】
:
各种便携式移动电子设备,新能源汽车以及大规模储能技术的迅速发展,对于锂离子电池性能提出了更高的要求。目前商业化负极材料石墨的理论容量仅为372 mAhg-1,不能满足锂离子电池性能提升的进一步需求。过渡金属氧化物因其储量丰富、合成简单、成本低、理论容量高以及电化学稳定性高等优点有利于成为下一代锂离子电池材料。但其充放电过程中体积变化较大,电导率和锂离子扩散能力较差等缺点限制了其实际应用。为了解决上
【基金项目】
:
国家自然科学基金(No.51571054, No51571046);
论文部分内容阅读
各种便携式移动电子设备,新能源汽车以及大规模储能技术的迅速发展,对于锂离子电池性能提出了更高的要求。目前商业化负极材料石墨的理论容量仅为372 mAhg-1,不能满足锂离子电池性能提升的进一步需求。过渡金属氧化物因其储量丰富、合成简单、成本低、理论容量高以及电化学稳定性高等优点有利于成为下一代锂离子电池材料。但其充放电过程中体积变化较大,电导率和锂离子扩散能力较差等缺点限制了其实际应用。为了解决上述缺点,本文对Co3O4和NiO进行气相改性,研究缺陷结构对锂离子存储性能的影响。具体内容如下:首先,采用水热法制备立方体Co3O4纳米粒子,通过Ar退火处理在避免其它相形成的同时,只改变氧空位浓度。电化学分析表明具有最佳氧空位浓度的Co3O4-250电极具有最优的电化学性能,在电流密度为0.1 A g-1时可逆容量达到904.2 mAh g-1。氧空位有利于提高Co3O4电极存储锂的性能,单纯氧空位含量与可逆容量之间存在正向相关的关系。在Ar处理的基础上,也对立方体Co3O4粒子进行了 H2/Ar气相改性的研究,结果证明改性后出现CoO/Co3O4界面结构,并且改性后样品性能发生明显变化,15-Co3O4电极在0.5 A g-1电流密度下150次循环后,可逆容量仍保持在883.4 mAh g-1,而AP-Co3O4的可逆容量为625.6 mAh g-1,证实这种方法可行性。其次,采用水热法与煅烧处理结合成功得到多孔Co3O4纳米片,并通过H2/Ar进行改性处理。改性后的样品形貌没有改变,产生Co3O4/CoO界面结构和氧空位。优化的样品Co3O4-30表现出优异的电化学性能,在0.5 A g-1电流密度下200周循环后具有891.5 mAh g-1的可逆容量,即使在5.0 A g-1的高电流密度下,也维持了250.0 mAh g-1的可逆容量。最后,采用简单水热和煅烧处理成功制备出NiO多孔纳米片,再进行H2/Ar气相改性处理。H2/Ar气相改性处理成功调控了 NiO多孔纳米片的氧空位浓度,随着还原时间增加,不断促进氧空位浓度增加。NiO-30样品电化学性能最优,在电流密度为0.1 A g-1下循环30周容量仍保持678.8 mAh g-1,进一步证实了氧空位对锂离子负极材料性能促进作用。
其他文献
TiN夹杂物在钢液凝固过程中会不可避免地析出。TiN在钢中的形状,尺寸大小以及分布对钢的强度、韧性和疲劳性能均有影响。例如,TiN会引起钢中裂纹的产生,小尺寸TiN又可以改善钢的屈服应力。为直观呈现钢液凝固过程中TiN夹杂物从形核到长大的完整过程,本文基于元胞自动机(CA)模型建立了模拟钢液凝固过程中枝晶生长和TiN析出的跨尺度模型。模型通过线性插值的方法将宏观温度场网格、介观枝晶生长网格和微观T
目前,齿轮钢20CrMnTi是国内用量最大、最广泛的齿轮钢种。目前我国齿轮钢纯净度较低,与发达国家还有一定的差距。某厂在生产齿轮钢20CrMnTi时,非金属夹杂物弥散程度不够,分布不均,大尺寸夹杂物较多,严重影响了使用性能。本文以某厂生产齿轮钢20CrMnTi为研究对象,在工厂调研基础上,进行了钙处理过程热力学计算,通过钙处理工艺优化,分析了钙处理工艺对齿轮钢20CrMnTi中夹杂物的影响。在利用
近年来,燃气表在人们的日常生活中应用越来越广泛。目前,民用燃气表主要为膜式燃气表,超声波燃气表由于具有测量精度高、压力损失小、测量范围广等优势,逐渐引起国内外流量界的关注。因此,开展超声波燃气表的研究是一项很有意义的课题。本文从超声波换能器的特性出发,对时差式测量原理进行深入分析,针对声速对测量结果带来较大误差这一测量缺陷,提出改进型时差法流量测量原理,同时对影响流量计量精度的因素作简要分析。系统
以硫化矿为原料进行的铜火法冶炼过程中会产生大量的硫氧化物气体SOx,这些硫氧化物以SO2为主,同时含少量的SO3。当SO3在烟气中超过一定浓度就会对正常生产造成影响。SO3的存在会造成余热锅炉和收尘设备的腐蚀;影响余热回收和收尘效率;影响脱汞和增大污酸量等一系列问题。而现今控制烟气SO3的技术大部分都集中在燃煤电厂中,燃煤电厂中采用含钙、镁的碱性化合物来控制SO3,这些技术在燃煤电厂中取得了很好的
多目标优化问题在实际工程应用中广泛存在,如汽车稳健优化设计,水资源管理,投资组合计划等问题。常规的多目标优化算法通常需要数以万计的评价次数,只适合解决一般多目标优化问题。常规多目标优化算法求解昂贵多目标优化问题的每一次评价都会花费高昂的时间或经济代价,因此并不适用于求解昂贵多目标优化问题。由于高斯模型可以很好地预测原模型并提供不确定信息,对解决实际的昂贵优化问题提供很大帮助,因此关于昂贵多目标优化
高熵合金是最近几年发展起来的新型合金,综合性能优异,具有广阔的应用前景。Fe50Mn30Co10Cr10是具有TRIP效应的双相高熵合金,其强塑性优于大多数传统合金和高熵合金,有望发展成为新型工程材料。但是目前Fe50Mn30Co10)Cr10高熵合金的屈服强度还无法满足工程应用的要求,亟待进一步提高。因此本研究通过引入间隙原子N来进一步改善Fe50Mn30Co10Cr10高熵合金的力学性能。本文
弥散强化铜基复合材料因具有良好的高温与室温性能,常被应用在电子电器设备中。但由于国内对此种材料的研究起步比较晚,材料制备工艺不够成熟,其各种性能指标还有待进一步改善。本文探索了制备工艺对Cu-La2O3复合材料组织与性能的影响,以期为铜基复合材料的设计及性能改进提供理论基础和技术支撑。本文采用内氧化与放电等离子烧结相结合的方法,制备高强高导Cu-La2O3复合材料。通过扫描电子显微镜(SEM)、透
在高稀土含量的253MA稀土耐热钢和高铝高稀土含量的稀土铁铬铝合金的连铸过程中,中间包内普遍发生较为严重的渣金反应。中间包覆盖剂成分发生偏离,性能逐渐恶化,结壳现象频发,严重恶化其使用性能,影响生产工艺顺行。而且,稀土耐热钢和稀土铁铬铝合金中稀土、铝等还原性元素含量远高于普通钢种。上述钢种连铸过程中间包内渣金反应的机理仍未得到解析,渣金反应过程钢中不同元素和渣中不同组元的作用行为仍有待明确。本文以
硫化钼和硫化镍是金属硫化物的重要组成部分,它们来源广泛,成本低。作为电极材料时,硫化钼和硫化镍都具有高的理论容量和电压平台。但这两种金属硫化物电极材料存在低离子/电子电导率,体积易膨胀粉碎等问题。本文采用湿化学法合成硫化钼和硫化镍负极材料,并采用缩小粒子尺寸,制备网状形貌碳改性等方法提高其电化学性能。本文首先通过简单的湿化学法合成一系列由不规则MoS2纳米粒子堆叠形成的纳米结构,探究了热处理温度和
马氏体相变是材料科学与工程领域重要基础理论,是钢铁材料热处理强化的主要手段。马氏体相变驱动力受奥氏体在Ms点的屈服强度、母相奥氏体缺陷密度以及应力场等的影响。一般情况下,低碳钢(Wc<0.20%)或低碳合金钢在强烈淬火(5%-10%NaCl或10%NaOH水溶液)后,才能获得板条状马氏体;工业纯铁需要105-106℃/s的冷却速度才能淬成板条马氏体。压力是一种有效的调控方法,它的独特之处在于不用改