【摘 要】
:
随着互联网的兴起和普及,我们进入了一个人人都生产数据的时代,需要处理和存储的数据呈指数式的增长,但传统的数据处理和存储技术却遭遇了瓶颈。而云计算作为海量数据处理和存储的主流平台应运而生。Hadoop则是云计算开源的分布式并行计算框架之一,由Apache旗下基金会发布,被广泛地应用于众多大公司,例如雅虎、脸书、亚马逊、谷歌、微软等。因此,Hadoop渐渐地成为了云计算平台海量数据处理和存储的主流框架
论文部分内容阅读
随着互联网的兴起和普及,我们进入了一个人人都生产数据的时代,需要处理和存储的数据呈指数式的增长,但传统的数据处理和存储技术却遭遇了瓶颈。而云计算作为海量数据处理和存储的主流平台应运而生。Hadoop则是云计算开源的分布式并行计算框架之一,由Apache旗下基金会发布,被广泛地应用于众多大公司,例如雅虎、脸书、亚马逊、谷歌、微软等。因此,Hadoop渐渐地成为了云计算平台海量数据处理和存储的主流框架。Hadoop集群亟须解决的问题主要有:(1)由于用户的异构需求,以及服务器的升级和换代,Hadoop YARN集群通常由不同资源配置的异构服务器节点组成,在异构Hadoop YARN集群环境下,服务器节点间通常存在负载不均衡问题;(2)Hadoop YARN框架内置的资源调度器并不是为了实现节能而设计的,并且其对应的集群所产生的巨大能耗不可忽视。(3)异构Hadoop YARN集群中所有的服务器节点间存在资源分配不均衡、资源利用率低等问题,从而将导致Hadoop YARN集群整体性能偏低问题,难以满足大数据时代背景下不同的计算和存储需求。本文将围绕异构Hadoop YARN集群环境下的能耗、性能、负载均衡三个研究方向进行展开,解决以上问题。本文主要的工作内容如下:(1)本文设计了一个基于异构Hadoop YARN集群的系统架构,该系统架构主要包括三个基本组件:任务分析器(Task Analyzer)、在线任务调度器(Online Dispatcher)和DVFS调节器(DVFS Adjuster),本文将Hadoop YARN集群中的任务调度问题定义为用户指定的截止时间约束的能耗优化问题。(2)本文提出了一种基于负载均衡和截止时间约束的启发式算法。该启发式算法是基于负载均衡因子和用户指定的作业截止时间内调度Map Reduce任务到服务器节点,以提高能源效率。(3)本文在一个拥有五个服务器节点的真实的异构Hadoop YARN集群上进行了大量的实验,并利用三种类型的Map Reduce作业来评估启发式算法的有效性。实验结果表明,与应用于类似问题的三种可替代方法相比,该启发式算法能够在截止时间约束下完成任务,并且在均衡集群负载的同时使集群能耗最小化。
其他文献
内蒙古地区生物多样性丰富,但环境污染和气候恶化等因素导致濒危植物逐年增加,开展精准有效的植物保护刻不容缓。利用装有双目相机的无人机对濒危植物开展野外生存状况调查,确定濒危植物的空间分布位置,再进行生物性状等数据的测量,对了解植物生长情况,鉴定植物濒危等级意义重大。本文围绕植物定位和生物性状测量两大需求,研究了基于双目视觉技术的植物定位和测量算法。算法涉及的主要内容有相机标定、图像去雾和立体匹配。在
物联网(Internet of Things,IoT)作为第三次信息科技革命正迅速的涌现在不同的应用领域,推动生活方式向智慧化的方向发展,提高了社会的经济效益。然而,物联网传感器层(IoT Sensors Layer,ISL)目前所面临的能耗和安全问题成为了限制其快速发展的主要因素。针对上述问题,本文将从兼顾ISL能效和安全性的角度出发,结合IoT的网络特性,对适用于ISL的高效路由协议展开研究。
雨、雪、雾霾等恶劣天气会导致严重的大气散射,这会使拍摄设备获取的视频图像色彩失真、对比度降低,导致以提取图像内部特征为基础的比如天网系统等道路监控系统和现在应用比较多的视觉识别系统无法正常工作。所以为了能使这些视频采集系统正常且稳定地工作,使有雾图像中的细节信息恢复,必须行之有效地去除图像中由于天气效果所带来的干扰,使获取到的有雾视频图像的关键信息得以重现,这样的预处理对提高视觉系统的可靠性和鲁棒
为了推动奶牛养殖业的现代化、规模化发展,我国多个部门联合发布文件推动活体奶牛抵押为奶牛养殖个体户和中小型牧场提供资金。但是活体抵押贷款中存在着很多问题。一方面,活体抵押品本身具有特殊性,容易遭受自然灾害的破坏以及被人为的恶意更换,很难作为抵押品使用;另一方面,奶牛养殖牧场往往位置偏僻,频繁派遣工作人员前往会浪费大量的人力。本文基于上述活体抵押面临的难题结合当地银行实际业务流程,使用物联网技术,流行
多视角个体动作识别研究是计算机视觉领域的一个前沿课题,旨在通过检测多视角动作数据而提取相关特征,继而对动作特征理解以实现动作分类的过程。个体动作的多样性、不同种类动作的相似性以及相同种类动作的差异性都增加了识别难度;拍摄场景的复杂性、光照的强弱性和视角的多变性也同样影响着识别效果。为了改善多视角个体动作的识别效果,本文搭建了基于残差网络(Residual Network,ResNet)和长短期记忆
智慧物联网行业的兴起,为草原火灾监测预警系统的实现提供了更加细致精密的手段。在草原火监测中,运用各类传感器对草原环境进行有效的监测,以大数据分析及人为控制等手段为草原构建出各季最优环境,是进一步抑制草原火灾的重要举措。本文针对现有的草原火监测系统存在的数据采集时能量所耗较多、数据因未进行全网同步而不具有时效性等问题,选用以ZigBee为技术基础的成本较低、功耗适中、分布式自组织无线传感器网络,设计
近年来对于植物的保护成为研究热点,在复杂广阔的自然环境下,无人机航拍成为植物图像获取的最佳方式。鉴于地面终端管理系统在航拍图像管理中的核心地位,对地面终端系统的深入研究成为航拍项目的重中之重。本文首先从实验室课题背景出发,采集内蒙古自然环境中植物的航拍图像进行分割与识别,以便统计区域内的植物种类及生长情况,本文针对课题应用所需设计一款地面终端管理系统,本地面终端系统可使操作人员对传回地面的图像更加
随着畜牧业的发展,规模化、精细化、智能化养殖已经成为牛养殖业的必然发展趋势。牛个体识别技术是牛精细化养殖和保险业的基础,并且牛的育种、疾病控制、智能化管理,以及乳制品与牛肉制品的质量监管等方面都需要高效的个体识别技术。随着深度学习技术在图像领域的发展,基于生物特征的牛个体识别技术取得了长足进步。本文以牛的面部特征为基础,提出了基于深度学习的牛面部图像识别方法,具体工作如下:1.构建牛面部图像数据集
近几年,公共场所佩戴口罩已经成为大多数国家的共识。同时卷积神经网络在图像识别领域有着良好的应用前景,卷积神经网络需要大量的资源和内存,并且计算量大,FPGA凭借其可重构、低延迟和低功耗等特点,成为主流的应用平台之一。本文通过在FPGA端部署卷积神经网络并识别口罩佩戴情况主要研究成果如下:1.在软件端,利用自主设计的卷积神经网络检测口罩佩戴情况,得到98.5%的识别准确率,并可区分出佩戴口罩不规范和
内蒙古自治区是全国五大牧区之一,在全国畜牧业中占据重要的地位。自治区的发展战略目标中提到,要逐步推进新型的信息科技在畜牧业中深层次的融合应用。其中,牛的个体识别技术对智慧牧场建设和畜牧业保险有着重要意义。三维识别方法比二维识别能提供更丰富的空间信息,可以更精准地进行个体识别。而在三维识别中,牛面部的三维重建是至关重要的一环,对畜牧业的智慧管理具有一定的应用价值。本文针对牛面部三维图像重建的主要研究