论文部分内容阅读
窗玻璃在火灾条件下极易受到过量热流的影响而发生破裂和脱落,形成新的开口,强化火灾区域通风,造成火势急剧增长,甚至溢出并跨区域蔓延,影响人员逃生。因此,研究防止玻璃在火灾条件下受过量热流影响而破裂脱落的技术是建筑火灾防控的重要内容之一。本文针对这一背景提出了一种采用细水雾幕阻隔火焰热辐射保护玻璃的方法,开展了细水雾幕对浮法玻璃保护效果的实验研究。本文首先考虑了不同细水雾幕工作压力和不同细水雾幕启动时间对细水雾幕保护玻璃效果的影响,同时与传统水膜对浮法玻璃保护效果进行对比。结果表明,火源与保护装置同时启动,细水雾幕和水膜都能将玻璃首次破裂时间延长。本文实验条件下,火源与保护装置同时启动,细水雾幕和水膜都能将玻璃首次破裂时间由150 s延长到600 s。相同的实验条件及流量下,细水雾幕比水膜表现出更好的保护效果。细水雾幕工作压力越大,保护效果越好,但当压力超过1.0 MPa持续提高细水雾幕压力,保护效果变化不明显。当玻璃表面温度达到一定值后启动分隔型细水雾幕,可以发现随着细水雾幕启动时间的延迟,其保护效果与同时启动的工况相比变差。当玻璃表面温度达到一定值后启动喷洒型细水雾幕,细水雾幕对窗玻璃保护效果不受影响,仍能有效延长浮法玻璃首次破裂时间。但延迟启动水膜,玻璃首次破裂时间与同时启动工况相比明显缩短。本文还通过改变细水雾幕厚度,详细分析不同厚度细水雾幕保护下玻璃首次破裂时间、玻璃内部最大温差及玻璃背火面辐射热通量等关键参数。结果表明,细水雾幕厚度对玻璃破裂有显著影响:压力一定,细水雾幕厚度越厚,保护效果越好,玻璃首次破裂所需时间越长。同时本文针对细水雾幕对热辐射的衰减作用,理论计算了不同厚度细水雾幕作用下的透射率和辐射衰减效率,发现随着细水雾幕厚度增加,辐射衰减效果增强,但当细水雾幕厚度增加到一定值(本文为7.5 cm),继续增加细水雾幕厚度,其衰减热辐射效果无明显改善。此外,在理论计算细水雾幕透射率基础上,通过分析经典的玻璃破裂时间理论预测模型,建立了细水雾幕保护下玻璃首次破裂时间的预测模型,并将预测结果与实验结果进行对比,发现结果呈现较好的一致性。