基于网络模型的癌症驱动模块识别方法研究

来源 :广西师范大学 | 被引量 : 0次 | 上传用户:xxzzxx_100
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
癌症驱动模块对癌症精准医疗和个性化医疗的重要性,使癌症驱动模块识别问题成为生物信息学的研究热点。对该问题的研究方法主要分为两大类:一类是从头识别方法,另一类是基于先验知识的识别方法。本文主要利用第二类方法对识别问题进行研究,针对组学数据噪声多、不完整、单一组学数据信息有限等特征,通过蛋白质相互作用网络整合多组学数据信息以提高数据的完整性和准确性,提出基于网络模型的癌症驱动模块识别方法,主要工作如下:
  利用体细胞突变、亚细胞定位和蛋白质相互作用网络三种数据,对(1)R R?种癌症的公共驱动模块识别问题进行研究。将模块连通性、互斥性、覆盖度和模块内基因间跳数作为模块优化目标,提出一种癌症公共驱动模块识别模型,进而提出求解该模型的识别方法IDM-SPS。该方法利用亚细胞定位数据对蛋白质相互作用网络降噪,调整网络拓扑结构,降低噪声数据对识别产生负面影响的可能性,利用体细胞突变数据加权网络的边,并基于包含五个新颖变异算子的遗传算法来求解模型。在真实生物数据集和模拟数据集上对算法IDM-SPS、Hotnet2和MEXCOwalk进行了实验对比分析。实验结果表明,IDM-SPS方法在大多数情况下对公共驱动模块的识别上要优于另外两种算法。
  利用体细胞突变、基因表达和蛋白质相互作用网络三种数据,对(1)R R?种癌症的特异驱动模块识别问题进行研究。通过重启随机游走算法分别对基于体细胞突变数据和基因表达数据的加权网络进行处理,以得到融合的加权网络。基于该加权网络提出一种癌症特异驱动模块识别问题模型,识别出在不同癌症样本间具有差异性的模块。进而提出基于贪婪策略的扩展算法ISM-SPG对该模型进行求解。在真实生物数据集上对算法DAMOKLE和ISM-SPG进行实验比较分析。实验结果表明,ISM-SPG方法识别出的特异模块在大部分情况下比DAMOKLE识别的效果要更好,在不同癌症样本间具有更大的差异性。而且,相较于DAMOKLE方法只能识别体细胞数据上的差异,ISM-SPG方法能识别出在不同癌症样本间的具有基因表达量差异性的模块,这有助于更好的分析癌症间的特异性。
  综上所述,本文对癌症驱动模块识别问题进行研究,提出了两种基于网络模型的癌症驱动模块识别模型和算法,这些方法可能成为检测癌症驱动模块的有用补充工具。
其他文献
图结构数据,像交通运输网、地铁网络和社交网络等在现实世界中大量存在。因此,学习并理解图是机器学习中的关键。目前关于图的研究主要分为:图分类和节点分类。节点分类通过给定一个在某些节点上带有标签的网络,它将预测该网络上其他节点的标签,是网络挖掘中非常重要的任务。节点分类实际上是一个机器学习问题,它将机器学习中的分类模型应用到了网络中。节点分类本质是对已有的分类模型进行改进,使其获得更好的分类效果。图表
学位
针对传统的物联网集中式访问控制模型,这些模型一般建立在可信第三方之上。物联网存在单点故障和数据篡改等问题,容易造成隐私泄露。此外,物联网设备还受到电力、内存,计算能力等限制,这种建立在可信第三方之上的访问控制模型面临巨大的管理和维护成本。随着物联网设备的急剧增加,这种模型无法满足物联网节点随时加入或离开的动态性特点,使得越来越多的物联网设备存在管理效率低等问题。因此,物联网的安全和隐私问题一直是物
学位
区块链技术(Blockchain)因其特有的去中心化、去信任、无法篡改、可追溯等特点,可以实现无信任基础的多方建立可信的数据共享和点对点的价值传输,从而得到了学术界和工业界的广泛关注。在区块链中,所有完成的交易都需要进行数字签名后存储用来验证交易。因此,如何增强区块链的数字签名可扩展性成为了一个具有挑战性的问题。其中,区块链交易的数字签名的大小和验证签名的计算成本是限制签名可伸缩性的主要因素。多重
学位
电子商务的发展使得在线交易日益频繁,在线交易规模也日益扩大。消费者与商家的交互越来越多,不可避免地要进行在线谈判。传统的在线谈判方式是低效的人工谈判,人工谈判已经不能满足广大消费者日益增长的潜在需求。随着人工智能技术的发展,智能主体技术已日益成熟,使得电子商务领域的自动谈判成为了可能。智能主体能够随时与人类进行高效的谈判,节约了大量人工成本。因此,人机谈判吸引越来越多的学者的兴趣。目前有很多关于自
学位
当前,人们利用互联网进行信息传递日益频繁,图像、视频等多媒体数据被广泛于各种互联网应用,因此如何确保信息在传输过程中的安全已成为一个亟待解决的重要问题。初期阶段,研究人员使用加密技术将原始信息内容打乱成无实际意义的乱码,有效解决了信息的安全问题。随着云存储与大数据技术的兴起,越来越多的用户希望将数据传送到云端保存。由于对服务商的不信任,因此许多用户会对信息进行加密,然后再上传到云端,这导致云端出现
学位
随着各种网络社交平台的兴起,文本作为这些平台的主要信息载体,数据量每天都在高速增长,如何正确处理这些海量的文本信息,即,将文本分类管理和应用,已经成为一项重要研究课题。近年来,文本分类的深度学习方法获得快速发展,可以快速准确的对大规模文本数据进行处理,具有广阔的应用前景。因此,本论文瞄准文本分类的深度学习方法,在下面两个方面取得研究进展:(1)提出基于改进的Cluster GCN的文本分类方法。首
学位
多相流现象对我们的生活生产具有重要的借鉴和指导意义,在能源的开发与储备、生命科学的研究与探索、材料的制备与应用等方面有着广阔的发展前景。其中多相流中液滴弹跳现象与我们的生活最为紧密,已经应用于我们的生活中,如打印、喷涂、自清洁等。液滴弹跳现象的研究在国内外已经取得了丰硕的成果,但仍然还有许多未被研究和深入探索的领域,特别是对液滴弹跳现象定量分析的研究相当少,加之液滴微尺度、瞬息变化快、易于变形等诸
学位
随着移动拍照设备的广泛使用,每天连续产生大量的图像,传统的图像数据管理工作包括图像存储、处理和检索技术已经无法适应快速增长的数据所带来的压力。用户往往将大量图像数据外包到云服务器以减少本地存储成本,同时为了确保图像安全防止隐私泄露而选择在外包之前对图像数据进行加密。然而加密后的图像数据失去了明文特征和数据之间的关联性,影响用户对图像数据的管理,导致无法进行高效地图像检索。虽然可以事先构造加密索引并
图像检索是模式识别中极具挑战性的研究方向。其中特征提取和紧凑的特征描述是图像检索技术的重要组成部分。传统的图像检索技术主要由两部分组成:(1)基于文本的图像检索(TBIR);(2)基于内容的图像检索(CBIR)。TBIR技术存在局限性且难以精确描述图像内容,而CBIR虽然能够通过低层视觉特征传达图像信息,但在高层语义表达方面仍存在很多不足。近些年,卷积神经网络(CNN)在图像检索和图像分类等任务中
学位
多相流不仅普遍存在于生活之中,在许多自然现象和工业生产中更有广泛应用。更好地了解和研究多相流的机理和性能,不仅能够帮助人们了解自然认识自然,在工业生产中创造更多的价值,而且在科学进步以及能源开采等方面有着重要的意义。表面润湿性作为多相流中的一个重要性质,用于表征液体在固体表面的延展能力,用接触角的大小来进行度量。接触角是在液体表面和固体表面之间的接触位置形成的特征角度,是很多工业应用和自然现象的基
学位