论文部分内容阅读
随着第五代移动通信技术的发展,面对有限频谱资源中的频谱复用问题,开发新的技术进行信号调制方式识别分类显得尤为重要。本文基于深度学习提出了两种信号识别分类模型,以代替传统专家设计的特征提取方法。此外,本文还基于这两种模型设计了一个能够高效处理海量数据的信号识别分类软件系统,利用Hadoop和分布式集群使系统具有高可用性、高可靠性、高安全性、高可扩展性和低延时性。本文的主要创新点如下:1、提出了基于Inception的信号识别分类模型。利用Inception网络结构提取不同尺寸的数据特征,使得网络具有更强的拟合能力。同时,利用稠密结构来近似最优的局部稀疏结构,使得网络既能够保持良好的稀疏性,又能利用密集矩阵的高计算性能。本文提出的Inception网络模型能够精确识别分类17种混合的模拟和数字信号。2、提出了基于LSTM的信号识别分类模型。LSTM网络引入输入信号序列的时序性和回环结构,使得网络具有记忆性。LSTM网络的这点特性使其能够更好地对模拟信号进行特征提取和样本拟合。相比于Inception网络模型,LSTM网络模型在保证数字信号识别准确率的条件下,能够提升模拟信号的识别准确率。3、设计了能够高效处理海量数据的信号识别分类软件系统。软件系统基于Hadoop和SSM进行设计,包括信号识别分类、标准信号库、权限管理等模块。Hadoop在上述提出的两种信号识别分类模型的基础上,结合HDFS和Spark为整个系统提供高性能的计算服务;SSM框架基于MVC原则构建的Java Web应用为用户提供交互界面和业务逻辑处理。同时,为了保障软件系统处理海量数据的能力,系统使用了分布式集群设计,包括接口服务集群、MySQL数据存储集群、Redis缓存集群等等。