论文部分内容阅读
AGV(Automatic Guided Vehicle)是一种用于物流系统的自动引导运输小车。文章首先介绍了AGV引导方式及特点,根据有无固定导向线可分为固定路径型和自由路径型两大类,根据自主车导航采用的硬件的不同,可将目前的导航系统分为视觉导航系统和非视觉传感器组合导航两大类。视觉导航系统按照定位方式不同又可以分为全局定位系统和局部定位系统,本文主要介绍全局定位系统工作原理及其控制技术。在全局定位系统中视觉传感器(CCD:Charge Coupled Device)一般是与车体相独立,主控制机根据CCD所采集到的信息对自主车进行定位并通过无线通讯系统对自主车驱动系统进行控制,实现自动引导。全局视觉引导相对局部视觉引导,不需要在地上铺设标志线,可同时控制多台AGV协同工作,大大的降低开发成本。并有利于建立合理的调度系统、路径规划系统。AGV系统多以各个独立的左右轮差速驱动结构为主,本文采用了常见的四轮机构。建立了转向系统运动学模型。AGV在曲线路径导航时,由于对控制器纠偏的快速性要求更高,而闭环控制器控制频率受限于图像处理的速度,因而导航精度会下降,稳定性较差。本文提出了开环控制转向原理,并对其进行了深入的分析与证明。根据全局视觉导航AGV的工作环境,通过图像处理系统建立了虚拟坐标系统,设定了车身标志,根据车身标志的中心点,计算车辆坐标及方位角。设计了基于89C2051的车载控制系统,并采用PID控制器实现对后轮驱动电机的闭环调速。对全局视觉导航AGV样车进行了多次实验,实验结果证明:全局视觉导航AGV具有更高的路径设置柔性,开环控制转向原理在曲线路径导航时,不需要图像处理,降低对系统的要求。为了扩大车辆的行驶范围,控制系统需要获得更多的图像及其它信息,基于全局视觉导航的AGVS应向多目视觉、多视觉传感器溶合的方向发展;全局视觉导航的AGVS不需要在地面设置引导线,必须有一个完善的路径规划系统,这些将是全局视觉导航AGV今后的研究重点。