论文部分内容阅读
如今世界经济发展迅速,但与此同时能源逐渐短缺的问题以及大量使用化石燃料所导致的环境问题越来越尖锐,所以尽快寻找化石能源的替代品成为了新时代发展的一大议题。电分解水制氢的发展已经有了很久的历史,但仍面临着电分解水制氢电能消耗过多,造成电分解水制取氢气不能大量投入工业生产的问题,寻找合适的电极催化剂材料成为了解决这个问题的出路。MOF材料因为其结构的特殊性使之现在已经成为研究的热点,它在电催化分解水方面有很大的潜力。本课题首先制备了Co-MOF前驱体ZIF-67,然后将其分别在700℃、800℃和900℃三种温度下烧结。用XRD、TEM、氮气吸附-脱附等测试手段分别表征了材料的晶相和孔隙结构,对材料的电催化分解水制取氢气(HER)的催化性能做了一系列测试。进一步探究了刻蚀、烧结温度对催化过程的影响。测试结果显示,刻蚀之后的材料的比表面积更大,催化性能更好;相比于其他烧结温度,800℃烧结的材料氮掺杂量最多为2.88%,石墨化程度更高Raman ID/IG为0.943,且比表面积更大为464.401 cm2/g。对其进行电化学催化产氢性能测试,结果表明800℃烧结的样品的催化性能更好,他在过电势为-306mV时电流密度达到10 mA/cm2,塔菲尔斜率值为98 mV/dec,经电化学阻抗拟合计算该材料的电荷迁移电阻为29.6Ω,然后通过材料在不同扫速下的循环伏安曲线,计算得出该材料的双电层电容为2.605 mF/cm2。制备Fe掺杂ZIF-67,并对其在800℃下进行烧结。通过XRD和TEM表征表明Fe元素成功掺杂进入了MOF结构中,5%掺杂量的材料的氮掺杂量最高为7.03%,石墨化程度最高,Raman ID/IG为0.935,比表面积为466.9 cm2/g,对各个掺杂含量样品进行电化学催化产氢性能测试,实验结果表明Fe掺杂量为5%的样品的催化性能最好,它在过电势为-209 mV时电流密度达到10 mA/cm2,塔菲尔斜率值为80 mV/dec,经电化学阻抗拟合计算该材料的电荷迁移电阻为23.6Ω,然后通过测试材料在不同扫速下的循环伏安曲线,计算得出该材料的双电层电容为5.06mF/cm2,说明烧结温度为800℃Fe掺杂含量为5%时的材料的电催化性能最好。