基于深度学习的水表读数识别应用研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:qq273683019
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前水务部门的抄表存在着诸多问题,一是抄表人员通过手掌一体机到营业所下载抄表任务,然后携带抄表机奔赴现场抄表,从而导致人工效率低下、人工成本高;二是手掌一体机没有导航功能,在安排任务时需要考虑抄表人员对道路的熟悉程度,从而导致抄表计划安排比较困难;三是管理人员无法把控抄表人员的现场工作,无从考量抄表结果,从而导致监管不力等等。因此开发一套基于深度学习的智能抄表系统对水务部门来说是有意义和价值的。本文所研究的内容旨在基于深度学习构建水表图像识别的模型,并基于该模型研发一套面向水务部门的智能抄表系统。本文的主要研究内容及工作如下:(1)研究分析了基于深度学习的水表图像数字识别相关技术。着重研究了卷积神经网络,尤其是深入研究了Faster RCNN、SSD以及YOLOv3的网络架构特点和相关原理。在YOLOv3网络中研究了K-means和层次聚类的相关知识,通过对标注框宽和高的聚类效果研究对比,确定K-means的聚类效果更匹配YOLOv3大中小三种规格的先验框设置。(2)水表图像数据集的收集、整理、划分与增强。为了研究不同的数据集是否能够对模型预测水表数字准确度有所提升,将收集到的水表图像数据集根据目标检测算法识别并切割出黑色矩形框,以便排除其他数字的干扰,之后整理成两种数据集,一种是原水表图像数据集,一种是黑色矩形框图像数据集。根据模型训练的需要,将这两种数据集分成训练集和测试集两大部分,并通过图像增强扩增两种数据集中的训练集,以增加样本和改善图片的质量。(3)深度学习的模型选择研究。本文重点研究的内容就是针对黑色矩形框内的数字选择一个识别准确率高的模型并进行应用系统的研发。研究现有的深度学习模型,通过训练和测试,选择合适的模型,以便更准确的识别水表数字。本文使用了两种方案,方案一是通过深度学习网络直接训练整张图片并识别水表数字,方案二是通过深度学习网络训练黑色矩形框图片,并识别水表数字。深入研究分析了Faster RCNN、SSD以及YOLOv3这三种深度学习模型,最终确定了方案二中YOLOv3的识别效果最好,准确率达到了90.61%。因此,本文选择基于YOLOv3网络构建水表图像数字识别模型用于系统的开发。(4)研发基于YOLOv3的智能抄表系统。使用软件工程方法对智能抄表系统进行可行性分析、需求分析、总体设计、数据库设计与详细设计,并阐述系统的整体架构设计以及具体模块设计。除了水表识别功能外,还需要其他的功能模块,以构成完整的系统,包括管理端的用户及权限管理、数据维护、抄表计划等模块以及手机端的地图导航、任务模块、抄表模块、KPI模块等。之后编写代码完成系统的开发,并对手机端做现场测试,保障其流畅运行,对管理端做水表图像数字识别测试,最后统一进行软件测试,且测试效果符合预期。
其他文献
随着科技水平的不断提高,计算几何扮演着越来越重要的角色,并在计算机图形学、机器视觉、地理信息系统、车辆导航、工业设计和集成电路设计等领域具有广阔的应用前景。Voronoi图作为计算几何中一个十分重要的分支,也颇受广大学者的青睐。本文旨在针对传统的Voronoi图存在的一些局限性进行分析和拓展。一方面,传统点集Voronoi图是围绕平面每一个点进行最近领域的划分,Voronoi单元格的数量等同于点集
随着正交频分复用(OFDM)波形信号在全球范围内的广泛部署,近年来基于OFDM波形的外辐射源雷达逐渐成为了研究热点。然而,与有源雷达探测信号先前已知不同,OFDM波形外辐射源雷达需要在接收端提取参考通道中被多径和噪声污染的直达波作为参考信号。结合OFDM信号的波形特征,基于“解调-再调制”重构的参考信号提取方法是解决这一问题的常用途径。传统的重构方法主要采用依赖导频处信道信息的最小二乘(LS)和最
2020年是不同寻常的一年,全球经历了史无前例的新型冠状病毒COVID19,在疫情期间,我国推出了很多防疫措施,抑制了疫情的侵袭蔓延。于是,提出了“无接触”概念,智能语音问答交互技术等无接触式人机交互技术突显出了优势。因此,本文以智能语音问答为研究方向实现无接触人机交互。语音问答技术实现需要解决三个问题,语音识别、知识库的建立、答案匹配。语音识别作为前端数据入口,其识别正确率直接关系到后端问答系统
随着互联网的普及与高速发展,软件应用对并发量和服务质量的要求越来越高,推动着互联网的架构不断演变。迅速增长的用户规模,日益复杂的业务系统,导致网络的并发访问流量爆发式增长。单一的服务器架构受限于硬件和网络带宽等,难以应对海量的用户访问,集群和负载均衡技术应运而生,它们能够提供更强大的任务处理性能和容错能力。其中,微服务架构以其优秀的组织结构和开发性能得到了广泛关注,可以通过将复杂系统拆分成多个独立
范宽,北宋山水画三大名家之一,他发展了荆浩的北方山水画派,主张"外师造化,中得心源",对后世影响深远。本文从"师法自然"的艺术理念出发,结合其家乡照金的山水景观,重新感受《溪山行旅图》中所描绘的景象,在作者的带领下,更进一步地理解范宽山水绘画的艺术源流。
期刊
近年来,由于化石燃料的燃烧和烟花爆竹的燃放等行为,造成了严重的空气污染问题,使得空气质量不断下降。不论是国家、政府还是人民都想对空气质量进行评估,以便于采取相应措施将空气质量控制在一个合理的范围之内。而现有市场上的空气质量检测仪存在着体积较大且不利于随身携带等缺点,如果能够结合可穿戴设备体积小巧且方便穿戴的优点,便能随时随地对周围环境的空气质量进行实时监测,使得人们能够及时地了解到此时此刻的空气质
将深度学习技术应用于甲状腺超声图像中结节的检测与识别并辅助医师进行性状识别具有重要意义和应用价值。课题主要研究内容和取得的阶段性成果如下。首先,针对现有的甲状腺结节自动检测与识别方法在较高IoU阈值(IoU>=0.75)情况下,可能存在检测精度不高的问题。本文以当前目标检测领域先进的IoU-Net模型为基础,提出并构造了一个针对高质量的甲状腺结节自动检测与良恶性识别模型---Trident R-C
随着体育产业的蓬勃发展,体育图像数据量呈指数增长,对体育图像进行有效的分类就非常重要,这既可以方便用户快速检索和访问,也便于工作人员对体育图像资料进行存储和管理,同时还有助于体育产业的智能化发展。目前许多卷积神经网络在图像分类任务上取得非常好的精度,但网络模型的大小和运算量也随之增长,这就需要依赖计算机设备具有强大的计算能力和内存,这在一定程度上限制了卷积神经网络在资源有限的计算机设备上进行广泛的
在布匹的实际生产过程中,由于生产设备故障和操作不当等因素的影响,易致使布匹产生折痕、破洞等瑕疵。为保证产品质量,需要对布匹进行瑕疵检测识别,布匹瑕疵检测识别也成为纺织品企业生产和质量管理中的重要环节。但是目前纺织品企业大都是依靠人工肉眼去检测布匹是否存在瑕疵,这种方法不仅存在检测效率低下、缺乏一致性等问题,而且人工检测易受体能制约和主观因素影响,出现漏检和错检等问题。鉴于上述原因,设计并开发一种能
互联互通的全球化步伐逐渐加快,通过手机拍摄的文件、图书等文本图像成为便捷高效的信息交流形式。在文本图像分析流程中确定文本图像的语言种类,即文种识别,是多文种OCR技术的重要一步,对于索引和搜索等后续处理步骤至关重要。然而,文本图像在手机拍摄下容易发生仿射变化以及模糊失真等情况,增加了文种识别的难度。本文以提高文本图像文种识别准确率为目的,利用深度神经网络模型的优势进行文种识别的研究。主要研究工作如