论文部分内容阅读
电离层是中性原子和空气分子受太阳辐射发生部分电离的大气区域,位于地表60km以上。当电磁波经过电离层时会发生反射、折射等现象,导致任何依赖电磁波收发信号的系统都会受到电离层的影响,因此实现电离层的探测无论是在科学研究还是日常生活中都具有重大意义。在电离层探测的多种方法中,垂直探测是目前较为成熟、便利且广泛应用的地面探测手段,电离层测高仪通过发射1-30MHz的高频电磁波获取不同频率对应的回波时延,绘制电离层频高图以此反演电离层特征参数。高度分辨率与探测周期是电离层测高仪的两个重要指标。测高仪常用脉冲压缩技术解决作用距离与距离分辨率的矛盾,提高系统探测精度;在收发时序上,利用最大探测高度所对应的时间延迟作为接收时间,系统接收时间过长,难以实现电离层的快速探测。为实现电离层的高精度实时探测,本文提出了一种快速精确的电离层探测系统方案,此方案应用于张衡一号卫星的地面同步监测系统中,为张衡一号卫星提供相关科学数据,详细给出了测高仪天线单元和数控系统的具体设计:天线单元采用两副Delta天线作为测高仪收发天线,利用一发双收机制分时发射相互正交的极化波获取回波信号的极化信息;数控系统作为测高仪的核心单元,其利用40位类巴克码作为码元序列,脉宽为10μs,使测高仪的高度分辨率达1.5km;在收发时序中,利用延时可变接收方式设置收发间隔,有效缩短回波信号的接收时间,系统探测周期小于2min。具体研究工作如下:(1)调研电离层探测的主要方式与国内外电离层测高仪的发展现状。(2)详细研究了电离层垂直探测的基本原理与电离层测高仪的系统组成,通过分析A-H公式给出了本文电离层测高仪的工作过程与设计参数。根据天线单元的要求设计了一款尺寸为26m×8m(底宽×高)、方向图垂直向上、驻波比小于2.5的Delta天线作为电离层测高仪的收发天线。(3)以AX7020与自制电路板为实验平台,搭建测高仪数控系统。利用延时可变接收方式产生雷达收发时序;在时序信号的控制下,采用AD9957芯片产生中心频率为1-30MHz,步进频率为100k Hz的余弦信号,随后利用40位类巴克码编码余弦信号提高测高仪的探测精度;根据带通采样定理选取采样率为40MHz的AD9238芯片完成信号的模数转换,利用数字下变频(DDC)完成信号的变频与抽取,最后采用直接内存存取(DMA)技术等将信号传输到上位中。在整个数控系统的设计中,采用HDL Designer编写时序控制单元、DDC中的混频与抽取等程序;利用Matlab产生滤波器系数文件,随后导入ISE中设置采样率等相关参数设计有限脉冲响应(FIR)滤波器,最后与First In First Out(FIFO)、DMA、Block RAM(BRAM)等IP核布局连线生成数控系统电路,利用SDK编写运行程序,实现系统的控制与数据的传输。(4)利用示波器、信号源等搭建电离层测高仪数控系统测试平台,观察发射信号波形,随后固定收发间隔与发射频率,验证发射单元的正确性;标准信号源产生频率为70.04MHz的余弦信号作为接收单元的测试信号,验证接收单元的正确性。