论文部分内容阅读
氮是生命必须的元素之一,随着人口的增加和经济的发展,人为活动增加了地球陆地生态系统的氮投入。人为活化氮的投入一方面提高了作物的产量,满足了人类对食物和能源等的需求,但是另一方面化肥过量施用、畜牧养殖废污排放、化石燃料大量使用等人类活动过程,极大地干扰了氮在大气、水、生物、土壤等圈层的相互转化及运动。地球生态系统中的氮素超负荷承载,导致了地球环境自然平衡的破坏,从而引起温室效应、臭氧层破坏、酸雨、地下水硝酸盐污染、湖泊与近海水体富营养化等一系列从区域到全球尺度的生态环境问题。因此,研究氮素的输入输出过程、控制机制、影响因素和变化趋势,对于提出针对性的氮素管理措施,从根本上控制氮素流失、加强资源保护、改善生态环境、促进社会经济可持续发展具有重要意义。近年来尽管我国在氮素投入支出方面的研究取得一定的成就,但整体上还不够完善。本研究利用实验监测数据、农户调查数据、统计年鉴数据、图形数据与公开发表的文献资料等,通过建立氮素投入(生物固氮、化学氮肥、粮食和饲料进口以及大气沉降)和氮素支出(氨挥发、流入水体、反硝化和储存、粮食和饲料出口以及生物质燃烧)模型,研究我国不同区域空间尺度氮素特征,以明确氮素的来源去向、过程机制、变化规律、影响因素及其环境效应,探索氮素流失的控制环节和主要途径。本研究取得如下主要成果和结论:1、在以稻作为主的句容农业小流域,连续两年的观测数据和农业调查数据显示,2007-2009年该流域总氮投入为1272ton,单位面积通量280 kg N ha-1 yr-1。化学氮肥是主要的氮投入来源,占总量的78.7%;流域的大气干湿沉降为39 kg N ha-1 yr-1,是第二大氮源;流域生物固氮占总氮投入的13.8%,通过粮食和饲料进口的氮体现在农作物种子的买进,仅占总氮投入量的0.6%。作为典型的农业流域,该地区没有大规模的养殖场和工厂等,流域内生产的粮食和食品大部分输出到流域之外。人畜排泄物基本还田作有机肥,通过农田有机肥和化学氮肥氨挥发的氮为188ton,占总氮投入的14.8%。调查显示该流域农作物秸秆露天燃烧量很高,通过秸秆露天和作为燃料燃烧排放到大气中的氮为140 ton,占总氮投入的11%。作为流域唯一出水口的水库,氮输出仅9.3 ton,不到总氮投入的1%,这表明句容农业流域投入的人为活化氮大部分通过氨挥发和生物质燃烧的方式排放到大气中。氮素以氨挥发、生物质燃烧排放到流域外是影响该流域氮素循环的主要因素。该农业流域内每年有637 ton氮被土壤系统本身所去除或被储存于土壤中,占总氮素投入的50%。历史资料和实测数据显示,当地土壤全氮含量并没有明显增加,因此大部分盈余氮通过反硝化进入环境。当地独特的自然景观对氮素的拦截作用、反硝化作用对水体氮的去除和大量的氨挥发、生物质燃烧是水体氮输出低的主要原因。因此,从减少氮素损失和治理环境污染的角度出发,对于稻作农业流域内的氮素管理,应该更加关注氮素的气态损失。2、在人口密集,工农业、养殖业高度发达的太湖流域常熟地区,单位面积氮素总投入为23927 kg N km-2 yr-1,折合27707 ton。化学氮肥是最大的氮源,占总氮投入的56.6%;大量的粮食和饲料的进口是该地区氮投入的主要特征,总量为6186ton,单位面积5342 kg N km-2 yr-1,占总氮投入的22.3%;大气氮沉降和生物固氮分别占总氮投入的15.5%和5.6%。通过氨挥发和生物质燃烧进入大气的氮分别为3535ton和172ton,占总量的12.8%和6.2%;通过水体输出的氮为8108ton(7002 kg N km-2 yr-1),占总投入量的29.3%。差减法显示,51.7%的氮素通过反硝化进入环境或储存在系统中。太湖地区水污染严重,大量未经处理的生活污水、工业废水直接排入水体是导致水体氮污染的主要原因。本研究显示,该地区地表水输出平均氮浓度为6mg N L-1,高于我国地表水劣五类标准。通过农村生活污水、禽畜养殖排放到水体的氮是水体氮的第一大源,占总量的26.5%;城镇居民生活污水和工业废水是第二的水体氮源,为2085ton,占流入水体总氮量的25.7%;来自农田径流和淋溶的氮占总流入水体总氮量的17.9%,大气氮沉降所占的比例仅次于农田径流和淋溶,为17.0%。作为典型的河网平原地区,水产养殖也是该地区水体氮的一个重要来源之一,占总量的8.1%。因此,在控制当地城镇生活污水、工业废水等主要水体氮污染源的同时,也要采取措施控制农村生活污水、禽畜排泄物排的排放。3、1985、1990、1995、2000、2005、2007年我国大陆生态系统氮投入总量分别为3081、3778、4418、4610、5238、5426kg N km-2 yr-1,22年间投入量增加76.1%。化学氮肥是第一大氮源,生物固氮所占比例呈现逐步下降的趋势,大气氮沉降约占总氮投入的24%。1985年以后出现粮食和饲料净进口的现状,截止2007年,通过粮食和饲料进口的氮占总氮投入的3.5%。氨挥发和流入水体的氮占总氮投入比例相当,约20%。22年间生物质燃烧排放氮占总氮投入的5.3-7.7%。通过物质平衡法估算,反硝化约占总氮支出的41%,系统储存占17%,大量的氮投入通过反硝化途径进入环境。与其他国家和地区相比,我国化学氮肥的施用是导致氮素投入水平过高的主要原因,而因此导致的大气氮沉降、氨挥发等也显著高于其他国家和地区。受地理位置、人口密度、经济发展水平、土地利用类型等因素的影响,我国氮素收支在省域尺度上差别很大。人口密度与反硝化和储存、流入水体的氮、总氮投入呈极显著直线正相关关系;耕地面积占总面积百分比、人均GDP与氮总投入、氨挥发、反硝化和储存、流入水体直线显著正相关。除林地面积百分比与生物质燃烧排放的氮直线显著正相关外,草地面积百分和林地面积百分比与氮素总投入、氨挥发、反硝化和储存、流入水体直线显著负相关。因此,在人口密度较大、经济相对发达的东部和东南沿海地区以及耕地面积比例较大的河南、山东、河北等省,氮素投入总量较高,相应的氮素流失量也较大。而在广大西北、西南地区,经济发展水平相对较低、人口密度小、土地利用类型以林地和草地为主,氮素投入较低、对环境的影响相应较小。我国长江、黄河、珠江三大河流水体存在不同程度的氮污染情况,本研究对三大流域的水体氮输出估算显示,长江流域是三大流域中水体氮输出最高的流域,1985、1990、1995、2000、2005、2007年水体氮输入分别为1.90、2.43、2.59、2.76、2.61Tg,相应年份河口氮输出量为1.33、1.7、1.81、1.93、1.83Tg;黄河、珠江流域流入水体、河口输出的氮相对较低,不足1Tg。1985-2007年间,三大流域的氮输出均呈增加的趋势,以长江流域增长较低,为37.4%,黄河流域增长最大,为61.5%。三大流域河口氮输出估算值与实测值相比,除黄河流域因常年断流、农田灌溉用水等原因导致估算值偏高外,其他两个流域估算值与实测值一致。4、不同尺度下的氮素收支研究显示,人为活动严重影响了氮素的生物地球化学循环。化学氮肥的投入在不同尺度下均为最大的氮素来源。不同尺度下,大部分氮素都通过反硝化或者系统储存进入到环境中,反硝化与系统储存的氮约占总氮投入的50%左右。在以农业种植为主的农业小流域,氮素投入支出与农业活动紧密相关,投入到环境中的氮素主要通过氨挥发、生物质燃烧等气体形式排放到大气中,地表水径流输出很低。而在经济发达的中尺度河网平原地区,除化学氮肥外,粮食的进口占氮素投入的比重较高。大量未经处理的生活污水、工业废水、人畜排泄物等流入水体导致水体氮浓度过高,水体富营养化严重。国家尺度下,氮素的投入支出时空变化差异较大,氮素的循环过程主要受人均GDP、土地利用类型和人口密度的影响。投入到地表的氮素超过70%通过反硝化、生物质燃烧、氨挥发排放到大气中,产生酸雨沉降、温室气体等环境问题,而约有20%的氮素流入到水体,造成我国主要河流的水质污染。