论文部分内容阅读
本论文以氨基酸和短肽类衍生物为研究对象,合成了新型的自组装分子:二茂铁-氨基酸/短肽、卟啉-氨基酸,并设计了自组装和共组装体系。通过从自然界获取灵感,开发了光引发的聚合自组装调控策略,实现对自组装和共组装体系的可重构性组装。进一步,从分子本身的结构和功能入手,探索了自组装体在仿生矿化、仿酶催化、手性催化,和手性拆分等方面的应用。(1)设计合成新型自组装氨基酸衍生物:二茂铁-酪氨酸(Fc-Y)。Fc-Y分子具有光交联活性,在紫外光照射下会发生分子氧化、聚合,形成寡聚物。这种分子结构的变化使得其自组装结构也能够发生可重构的自组装,由表面光滑的纳米球转变为表面片层结构的空心纳米囊。Fc-Y自组装纳米结构具有还原性,可进行仿生矿化,形成的Au@Fc-Y复合物可以用于仿酶催化。此外,Fc-Y自组装纳米结构还可用来制备电容器,用于能量存储。(2)构建基于Fc-Y的共组装仿酶体系。将具有氧化还原活性的葡萄糖氧化酶(金纳米颗粒)和具有过氧化物酶活性的血红素引入到Fc-Y超分子组装体中,通过调节光照条件,三种组分能够共组装形成多种纳米结构,如纳米球、表面褶皱的纳米颗粒、表面为AuNPs的纳米球和截角多面体。这些共组装形成的纳米结构可以用于双酶连串催化反应体系,具有高稳定性和催化活性。(3)设计合成新型自组装氨基酸衍生物:二茂铁-色氨酸(Fc-W)。Fc-W分子能够自组装形成片层堆积的三维微米花状结构。随后,AuNPs可以在微米花表面进行原位仿生矿化,形成AuNPs@Fc-W微米花超结构。这种AuNPs-氨基酸衍生物复合超结构具有高效的光热转化效率和催化特性,在光热治疗领域具有潜在的应用前景。(4)设计合成新型自组装氨基酸衍生物:二茂铁-脯氨酰胺(Fc-CO-NH-P)。在不同溶剂中,由于氢键和π-π堆积相互作用力,Fc-CO-NH-P分子能够自组装形成多种超分子自组装结构,如纳米球、微米片、纳米花,和纳米片。其中,Fc-CO-NH-P分子自组装形成的纳米花结构具有超大的比表面积,且其表面暴露有大量不对称的催化活性位点,这使得Fc-CO-NH-P纳米花在水相中催化不对称羟醛缩合反应表现出超高的转化率和选择性,收率>99%,对映体过量百分率>99%。此外,这种超分子自组装手性催化剂对其它芳香醛类也具有很好的催化效果。(5)设计合成新型自组装两亲性三肽:二茂铁-苯丙氨酸-苯丙氨酸-组氨酸/天冬氨酸/苯丙氨酸/丝氨酸。这种二茂铁-三肽分子能够在水相/有机相界面自组装形成稳定均一的纳米乳液。通过对水相/有机相比例、温度,和氨基酸序列进行调节,乳液的粒径和相态能够被精确调控。在低于室温环境下,Fc-FFH纳米乳液会发生熵驱动的相转变,由纳米乳液转化为凝胶。此外,Fc-FFH纳米乳液还具有氧化还原活性和仿酶催化特性。(6)设计合成新型自组装氨基酸衍生物:卟啉-苯丙氨酸(TCCP-F4)和卟啉-色氨酸(TCPP-W4)。L型和D型的TCCP-F4分子可以分别自组装形成左手和右手的纳米螺旋,进一步,通过调节溶剂种类、溶剂比例、p H和温度,纳米螺旋的直径和螺距可以被精确调控。通过改变氨基酸序列,纳米螺旋的手性可以得到成功翻转,L型和D型的TCCP-W4分子可以分别自组装形成右手和左手的纳米螺旋。此外,TCCP-F4纳米螺旋可以对手性化合物进行高效拆分。