论文部分内容阅读
放煤规律始终是特厚煤层综放开采研究中关注的重点之一。本文以不连沟煤矿特厚煤层综放工作面为工程背景,开展破碎覆岩、层状覆岩和含破碎层的层状覆岩,三种覆岩条件下顶煤放出规律的相关研究。首先,根据顶煤放出过程中待放区内的顶煤堆积密度变化,结合散体颗粒的Bergmark-Roose运动模型,对顶煤放出规律进行理论分析,建立了匀变密度函数的放出体模型,通过理论分析确定了层状覆岩内的悬臂-铰接结构具有同步和异步的运动特征。其次,借助数值模拟软件中的线性和平行黏结力学接触模型,研究破碎覆岩、层状覆岩和含破碎层的层状覆岩对放煤规律的影响,揭示不同覆岩条件下放煤规律的内在联系,破碎覆岩物理力学性质与顶煤放出量间存在二次函数的关系,建立了破碎覆岩条件下全工作面平均顶煤回收率的量化模型;层状覆岩中悬臂结构失稳抑制顶煤放出作用最强,其次是铰接结构,层状覆岩中的破碎层能够缓冲覆岩结构运动的抑制作用。最后,基于研究成果提出水力压裂弱化顶板增加破碎岩层厚度的技术措施,不仅有助于提高顶煤回收率,同时能够有效弱化工作面矿压显现强度。论文主要研究成果如下:(1)建立破碎顶煤颗粒放出过程中的堆积密度变化的匀变密度函数放出体模型。受采空区颗粒移动边界和支架的约束,顶煤堆积密度与放出截面、距放煤口距离呈正相关性。同时,层状覆岩内的多层坚硬岩层破断形成的“悬臂-铰接”结构,进一步改变了顶煤放出过程中的堆积密度,建立以放出截面半径为自变量的密度变化函数,结合Bergmark-Roose散体运动模型,建立匀变密度函数放出体模型。相较传统的恒定密度放出体模型,匀变密度模型横向变形量增大37.14%;径向呈压缩状态,压缩变形量减小27.27%,顶煤的放出体发育过程中横向扩展区域大于径向扩展区域。产生这种变化的原因是破碎顶煤堆积密度随距放煤口的距离变化,从而改变了放出体的形态。引入匀变密度放出体模型更能真实的反应顶煤放出体的变化规律。(2)破碎岩层条件下岩层中的层厚、岩块粒径和摩擦系数与顶煤放出量均呈二次函数关系,存在影响顶煤放出量的极大值和极小值。破碎岩层厚度与顶煤厚度为1:1时,顶煤的初始放煤量、周期放煤量和回收率最大。破碎煤岩粒径比在1:1.6~1.7的区间内,顶煤的初始放煤量、周期放煤量和回收率最小;破碎煤岩摩擦系数比为1:4.2时,顶煤的初始放煤量、周期放煤量和回收率最大。(3)破碎岩层条件下顶煤放出体高度随工作面推进而呈现不同的变化规律,但是周期放煤循环内的平均放出体高度大于1倍支架高度,小于2倍支架高度。放出体近似“下部三角形-上部局部圆形”的组合形态特征。初始放煤循环的放出体高度近似等于煤层厚度,且放出体形态呈现“下部三角形-上部局部椭圆”形态特征。由此建立破碎岩层条件下的全工作面顶煤回收率的量化模型。(4)对比研究了层状覆岩与含破碎岩层的层状覆岩条件下的放煤规律。层状覆岩的条件下,不规则垮落岩层的破断岩块的嵌入抑制了顶煤放出体形态的发育,使得各个放煤循环过程中放出体形态在“三角形”、“三角形-局部圆”和“三角形-局部椭圆”之间随机形成。悬臂结构失稳使得支架尾梁上部的待放顶煤区内强力链增加且向放煤口侧转移,改变了传统研究中的随顶煤放出待放区顶煤力链减弱的趋势。强力链的增加抑制破碎顶煤向放煤口的移动趋势,且破断岩块嵌入改变了煤岩分界线,使得顶煤放出量急剧减小,铰接结构失稳使得支架尾梁上部的待放顶煤区内强力链增加,但增加数量小于悬臂结构失稳,且其下部规则垮落带内岩块形成挤压拱,使得顶煤放出量虽然减小但影响程度小于悬臂结构失稳。悬臂结构的失稳对顶煤回收率影响最为显著。破碎层的存在能够有效弱化上部覆岩运动对顶煤放出过程的影响。(5)破碎覆岩、层状覆岩和含破碎层的层状覆岩对顶煤放出规律的影响,最终体现在周期放煤循环过程中顶煤放出体形态变化,但是对初始放煤阶段的顶煤放出体形态控制作用有限。(6)通过现场分析表明,特厚煤层综放工作面“大-小”周期来压时顶煤回收率减小。采用水力压裂技术进行顶板弱化,能够减小覆岩运动对顶煤放出规律的影响,弱化后的顶煤回收率提高了15.08%。