论文部分内容阅读
锂离子电池作为一种性能优异的储能设备,因具备高能量密度、无记忆效应、长寿命周期、低自放电和环保等特点,广泛的应用于笔记本电脑、数码相机、智能手机等可移动设备上。同时,锂离子电池使其作为大型电源最有希望应用于电动汽车和新兴智能电网领域。隔膜是锂离子电池非常重要的部件,虽然不直接参与到电池的电化学反应中,但是它对电池的安全性能以及电化学性能具有重要的影响。它不仅能够有效的将电池的正负极分隔开防止内部短路的发生,也能够为锂离子的传输给予有效通道。目前商用的隔膜主要是聚烯烃类微孔膜,如聚乙烯(PE)和聚丙烯(PP)隔膜。但是此类隔膜在对电解液润湿性和热稳定性上存在不足,从而会给电池的电化学性能和安全性能带来不好的影响。近年来,采用静电纺丝法来制备隔膜已经成为了隔膜研究工作者的热点方向。由静电纺丝法制备的纳米纤维膜具有独特的三维网络结构,还有比表面积大,孔隙率高,吸液率高等特点,以其作为电池隔膜能够提高离子电导率,改善电池的循环和倍率性能。
本文以醇铝盐作为前驱体利用溶胶凝胶法制备了稳定勃姆石溶胶,然后将其与聚丙烯腈溶液复合形成均相纺丝液,并利用静电纺丝的方法制备出勃姆石/聚丙烯腈(BM/PAN)复合纳米纤维隔膜。通过扫描电子显微镜(SEM)、傅里叶红外测试仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、热重分析仪(TG)、接触角测试、拉伸测试等方法,探究了不同的含量勃姆石对勃姆石/聚丙烯腈复合纳米纤维隔膜形貌、结构组成、热稳定性、润湿性、机械性能等的影响。而且,将复合隔膜组装成纽扣电池,通过电化学工作站和高性能电池检测系统测试了它们的离子电导率、电化学稳定性窗口、循环和倍率等电化学性能。
实验结果表明,勃姆石/聚丙烯腈(BM/PAN)复合纳米纤维隔膜比PP膜具有更高的孔隙率,更大的吸液率,更出色的热稳定性,而且组装在电池中表现出更优异的电化学性能。特别地,30wt%BM/PAN复合纳米纤维膜,综合性能最优。将其组装在电池中,电池具有最大的离子电导率(2.85 mS cm-1),最高的电化学稳定性窗口(5.5VvsLi+/Li),最小的界面内阻(84Ω),最高的首次放电比容量(162 mAh g-1)和最大的放电比容量保留率(90.7%,在0.5C下充放电循环100次)。因此,勃姆石/聚丙烯腈复合纳米纤维隔膜可作为商用隔膜的潜在代替品应用在锂离子电池中。
本文以醇铝盐作为前驱体利用溶胶凝胶法制备了稳定勃姆石溶胶,然后将其与聚丙烯腈溶液复合形成均相纺丝液,并利用静电纺丝的方法制备出勃姆石/聚丙烯腈(BM/PAN)复合纳米纤维隔膜。通过扫描电子显微镜(SEM)、傅里叶红外测试仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、热重分析仪(TG)、接触角测试、拉伸测试等方法,探究了不同的含量勃姆石对勃姆石/聚丙烯腈复合纳米纤维隔膜形貌、结构组成、热稳定性、润湿性、机械性能等的影响。而且,将复合隔膜组装成纽扣电池,通过电化学工作站和高性能电池检测系统测试了它们的离子电导率、电化学稳定性窗口、循环和倍率等电化学性能。
实验结果表明,勃姆石/聚丙烯腈(BM/PAN)复合纳米纤维隔膜比PP膜具有更高的孔隙率,更大的吸液率,更出色的热稳定性,而且组装在电池中表现出更优异的电化学性能。特别地,30wt%BM/PAN复合纳米纤维膜,综合性能最优。将其组装在电池中,电池具有最大的离子电导率(2.85 mS cm-1),最高的电化学稳定性窗口(5.5VvsLi+/Li),最小的界面内阻(84Ω),最高的首次放电比容量(162 mAh g-1)和最大的放电比容量保留率(90.7%,在0.5C下充放电循环100次)。因此,勃姆石/聚丙烯腈复合纳米纤维隔膜可作为商用隔膜的潜在代替品应用在锂离子电池中。