【摘 要】
:
全无机卤化物钙钛矿由于荧光量子产率高、荧光发射峰窄、发射波长可覆盖整个可见光区等优异光学性质,成为光电功能材料领域热点材料之一。掺杂是调控纳米晶光电性质的重要办法。以二维卤化物钙钛矿为宿主材料进行掺杂,由于二维钙钛矿较强的激子结合能以及较弱的电磁屏蔽作用将有助于增强宿主-杂质间相互作用,从而展示出与掺杂三维钙钛矿不同的光电性质。鉴于掺杂卤化物钙钛矿大多采用三维纳米晶宿主的研究现状,本论文将致力于二
论文部分内容阅读
全无机卤化物钙钛矿由于荧光量子产率高、荧光发射峰窄、发射波长可覆盖整个可见光区等优异光学性质,成为光电功能材料领域热点材料之一。掺杂是调控纳米晶光电性质的重要办法。以二维卤化物钙钛矿为宿主材料进行掺杂,由于二维钙钛矿较强的激子结合能以及较弱的电磁屏蔽作用将有助于增强宿主-杂质间相互作用,从而展示出与掺杂三维钙钛矿不同的光电性质。鉴于掺杂卤化物钙钛矿大多采用三维纳米晶宿主的研究现状,本论文将致力于二维卤化物钙钛矿的掺杂研究,主要工作如下:首先,利用合成后掺杂办法制备了二维掺杂钙钛矿纳米片。以预先制备的CsPbBr3纳米片为宿主材料,将MnCl2溶液加入纳米片中进行合成后掺杂。实验结果表明合成后掺杂过程既包括快速的Cl与Br卤素离子交换过程又包含慢速的MnCl2与CsPbBr3的分子交换过程。前者造成钙钛矿本征荧光峰大幅度蓝移,后者赋予纳米片新的Mn杂质荧光峰。结构分析表明合成后掺杂过程不会严重改变纳米片的晶格结构但会造成纳米片晶格的收缩。相比于尺寸超过波尔半径的三维钙钛矿纳米立方体,二维钙钛矿纳米片较薄的厚度极大加速了 MnCl2分子向晶体内部的扩散过程,从而使MnCl2与CsPbBr3的分子交换过程从70小时(三维掺杂体系)缩短到10分钟(二维掺杂体系)。其次,研究了两种不同的杂质投料过程对纳米晶光学性质的影响。第一种是采用固定浓度MnCl2的N,N二甲基甲酰胺溶液加入纳米片溶液中,通过改变加入体积获得不同投料比。随着投料比的增加,Mn杂质发射峰与钙钛矿本征发射峰的相对强度逐渐增强,纳米片色度从蓝色光区过渡到黄色光区。当Mn:Pb投料比在3-5之间时,纳米片色度处于暖白光区域。第二种方法是向纳米片溶液中注入相同体积但不同浓度MnCl2溶液。当投料比为4时纳米片发出暖白色荧光。虽然上述两种方法都可以用于调控纳米片色度,但二者对钙钛矿本征荧光峰位影响不同。两种掺杂方法都表明本征峰蓝移现象具有MnCl2溶液浓度依赖性,说明快速的Cl与Br卤素离子交换过程是决定本征荧光峰位的主要原因。
其他文献
高碳热轧盘条作为高强度钢丝的生产原料,其组织形貌决定了钢丝制品的性能。本文以S82B和S82BCr高碳热轧盘条作为研究对象,探究高碳钢中Cr元素对奥氏体化过程和等温转变组织的影响,研究不同奥氏体化状态的高碳钢对等温转变组织和力学性能的影响,并且分析高碳钢中晶界异常铁素体的形成机制和影响因素。在奥氏体转变过程中,高碳钢中Cr元素促进奥氏体的形核,同时降低奥氏体转变速度和碳化物溶解速度;随着奥氏体化加
3003铝合金为Al-Mn系合金,具有一系列优良的性能,被大量使用在翅片铝箔、包装容器等领域。连续铸轧法与传统的铸锭热轧法相比,具有设备简单,花费成本少,生产周期短的特点,大大简化了铝合金板带箔产品生产流程,提高了经济效益。然而,由于在Al-Mn系合金连续铸轧法生产中,铝液凝固速度极快,大量Mn元素以过饱和形式固溶于铝基体中,导致冷轧板在退火过程中形成异常粗大且不均匀的再结晶组织,导致连续铸轧3系
高熵合金设计理念的提出,给金属材料的研究指出了新的研究方向。目前,高熵合金研究领域尚存在结构特征、变形机理和加工成型等诸多亟待解决的难题,同时,含有更少的主元合金元素且性能优异的中熵合金渐渐进入人们的视野。通过添加特定的微量合金元素可以进一步调控中熵合金的强化机制,改善合金性能,拓展中熵合金在汽车、飞机和航空系统等先进工程领域的应用。本论文首先采用真空电弧熔炼法结合热锻和冷轧工艺制备了厚度约为1.
石墨烯是最具有代表性的二维材料之一,具有超高的导热系数,极高的杨氏模量,超大的强度、高比表面积和优异的导电性。这些优异的性能使其在热管理器件、柔性电子和能量存储等方面拥有广泛的应用前景。然而,在器件生产和应用中,由于加工环境和工作环境的影响,石墨烯器件可能会产生应变和缺陷,从而严重破坏器件的结构、影响设备的功能实现与寿命。此外,石墨烯的带隙为零,限制了其在半导体中的应用。而二硫化钼有覆盖可见区域的
自1994年纳米孔技术的概念提出以来,凭借实验操作便捷、超高通量、检测精度极高、信号可重复性好,固态纳米孔广泛用于检测病毒、细胞及金属颗粒等,在病毒检测、基因测序、疾病预防等方面有极大的应用潜力。本课题使用固态纳米孔对纳米颗粒进行了表征性实验研究。借助这项研究发现一般性规律,揭示潜在的物理图景,也侧面简化了生物分子的过孔情况,为生物颗粒检测研究提供了必要参考。主要研究内容及成果如下:1)完成了纳米
生物膜离子通道在细胞及生物个体内发挥着巨大的作用,对离子通道内离子迁移规律的研究有助于探究细胞及生物体各项生命活动的具体过程及原理机制,对药理学的发展及新药研发等领域有着极为重要的意义。纳米孔传感技术,可检测离子通过纳米通道易位时的电学变化情况。本课题研究制造小尺度纳米通道用以模仿离子通道,并对离子在通道内的迁移规律做初步探究。主要研究内容如下:1)制备小尺度纳米通道的关键技术研究。基于介质电击穿
由于编织工艺的复杂性和生产过程的差异性,导致复合材料具有诸多不确定性。为得到准确的复合材料结构动力学模型,需要全面考虑复合材料结构参数的非均匀性和随机性。因此,研究复合材料不确定性参数识别方法,已经成为现代工程科学的内在要求。本文针对复合材料不确定性参数识别方法,主要开展了三方面的研究工作:首先,针对复合材料不确定性弹性参数场描述方法开展研究。基于K-L级数对复合材料弹性参数场进行展开,提出一种基
在人们的日常生活中,细菌几乎充满每个角落,其中一些致病的细菌会威胁人们身体的健康。因此,实现材料的抗菌功能化有非常重大的意义。通过材料的表面处理可以实现材料的抗菌化,这成为现在抗菌材料研究的主要方向。本文以6063铝合金作为研究的对象,首先运用阳极氧化工艺再合金表面制备了多孔膜,然后以硫酸阳极氧化膜作为交流电沉积Ag的模板,成功制备了抗菌功能膜。综合运用各种测试手段,系统地研究了电解液类型、氧化电
目前白光LED器件普遍采用蓝光GaN芯片激发黄色荧光粉制备而成,器件显色指数不高。为提高显色指数可将多种颜色荧光粉混合后制备白光LED,但这种荧光粉混合物普遍存在相位分离、色度偏移等缺点。利用紫外LED激发单组分的白色荧光粉是解决上述问题有效办法之一,而制备高荧光量子效率的白色荧光粉就成为该法的关键。铅基卤化物钙钛矿材料具有独特的缺陷容忍性以及荧光波长可调、荧光量子效率高等优点有望用于高荧光量子效
纳米孔主要分为固态纳米孔和生物纳米孔。固态纳米孔的成本相对较低,并且其机械性能更加优异,因此它在纳流体器件设计上与离子输运的分子动力学模拟上更具优势。本文重点分析研究了氯化镧溶液里的离子输运反应过程,以MD模拟仿真的模式,分析研究了影响氯化镧溶液在纳米孔里输运的主要因素。主要研究内容和结论如下所示:氯化镧溶液浓度对溶液离子电流的影响。对于部分单价和二价离子,离子电流一般随着溶液浓度的增加而增加,并