论文部分内容阅读
随着互联网数据中心与电动汽车的快速发展,构建安全可靠的模块化直流供电系统为该领域研究工作提供了有力保障。目前主流的数据中心直流供电系统普遍采用三相三电平VIENNA整流器与DC/DC变换器的两级式级联结构,而三相VIENNA整流器的控制性能直接决定了直流供电系统的安全可靠运行。本文以三相VIENNA整流器为研究对象,主要围绕混合导通模式下的三相VIENNA整流器的电流内环控制策略、电流有限集模型预测优化控制(FCS-MPC)和VIENNA整流器与弱电网的交流级联小信号稳定性分析,开展了深入的研究工作。提出了一种基于占空比前馈与准比例谐振控制(QPR)复合的电流内环控制策略,并给出了控制环路参数的优化设计方法,有效改善了混合导通模式下VIENNA整流器的网侧电流波形质量。VIENNA整流器随着输出功率或滤波电感的减小,网侧电流由连续运行模式过渡到断续运行模式,从而造成网侧电流畸变。针对这一问题,首先建立了 VIENNA整流器连续运行模式与断续运行模式下的小信号数学模型。根据单位功率因数整流原理,在QPR控制的基础上引入一个理想的占空比前馈环节,形成一种复合型电流内环控制策略,前馈通道快速生成基础控制量,QPR控制器生成控制输出增量以校正控制误差,有效改善了 VIENNA整流器的动态响应性能和网侧电流稳态波形质量。提出了一种适用于VIENNA整流器的有限集电流模型预测优化控制(FCS-MPC)策略,实现了控制变量的多目标优化并改善了网侧电流波形质量。通过分析VIENNA整流器开关状态与中点电位波动的内在联系,根据负载电流与网侧电流预测值直接计算得到中点电位偏差,采用MPC多目标优化的特性,实现了中点电位的平衡控制。此外,针对控制延时造成的网侧电流畸变,采用了两拍延时补偿算法,进一步改善了网侧电流波形质量。提出了一种基于代价函数调制的模型预测定频控制(CFM-MPC)策略,实现了模型预测择优控制与SVPWM调制响应快速的优点。针对FCS-MPC单周期内开关矢量单一、开关频率不固定进而导致网侧电流纹波较大的问题,根据代价函数值优选三种电压矢量并直接计算生成优选矢量的作用时间,该方法具有可多目标优化、响应快速及网侧电流波形质量好等优点。提出了一种三相交流级联系统小信号稳定性分析的等效判据,并通过在整流器输入端引入并联虚拟阻抗的方法改善了弱电网下VIENNA整流器的稳定性。构建了面向交流级联系统稳定性分析的三相VIENNA整流器降阶小信号模型,分析了影响VIENNA整流器与交流弱电网级联系统稳定性的因素,指出三相交流系统可使用d轴阻抗来简化稳定性的分析过程,研究了引入并联虚拟阻抗的方式改善交流级联系统稳定性的可行性。论文采用了理论分析、仿真优化和实验验证的研究方法。针对三相VIENNA整流器系统,建立了面向控制系统设计的数学模型和面向稳定性分析的阻抗模型,构建了相应的系统仿真模型和物理实验平台。仿真和实验结果验证了本文所提出的控制策略和稳定性分析方法的有效性,也通过不同工况下的性能比较表明了本文控制策略的优越性。本文研究结果可为提升三相VIENNA整流器的网侧电流性能和直流侧中点电位平衡提供理论参考和技术支撑。