论文部分内容阅读
分子马达或马达蛋白广泛存在于细胞内部,可以高效地将化学能转化为机械能,从而产生定向运动。生命活动中的许多过程,比如货物运输、遗传信息表达、细胞运动、肌肉收缩等,都与分子马达的运动有关。近年来,分子马达的动力学一直是生物物理学的研究热点之一,尤其是集体马达系统,因其复杂的动力学行为而受到广泛关注。分子马达可以分为持续(processive)马达和非持续(nonprocessive)马达。非持续马达的“在位比”很低(≤2%),常常以集体形式发挥作用,但其协同作用机制目前仍不十分清楚。本文研究了非持续肌球蛋白Ⅱ型分子马达集体协作时的动力学非稳定性及效率,主要内容及成果如下:1、有些类型的肌肉能自发产生振动,普遍认为这与分子马达系统的动力学非稳定性有关。基于两态棘轮势模型并考虑分子马达的弹性(模型Ⅰ),研究了集体Ⅱ型肌球蛋白分子马达的动力学问题。当分子马达弹性较小时,分子马达系统的速度随负载力的增加单调下降;当马达弹性增大时,在力-速度关系曲线中出现动力学非稳定性。如果马达弹性足够大,则零速度点位于力-速曲线的非稳定区域,马达系统会在运动停止前进入动力学非稳定区域。如果该马达系统与其环境弹性耦合,则会出现自发振动,振动频率和马达弹性、马达绑定率、弹簧弹性以及ATP激发域的宽度等参数有关。对于中等马达弹性,零速度点位于力-速曲线的非稳定区域之外,故马达系统会在动力学不稳定性发生之前停止。2、机械效率是衡量马达集体协作的一个重要指标。利用模型Ⅰ研究发现,分子马达系统的机械效率远低于实验观测值。如果在模型中同时考虑肌球蛋白Ⅱ马达的以下两个特征(称之为模型Ⅱ),马达系统的机械效率就会大大提高并与实验结果一致:(1)分子马达从分离态到绑定态的转换只能发生在反应坐标的特定“结合位点”区域。(2)绑定态势阱彼此相互独立,即一个绑定马达必须先从细丝上脱离,然后才能绑定到另一个结合位点。在两个模型中,机械效率均随马达弹性系数的增加而增加。在模型Ⅱ中,如果ATP激发率较大,马达系统在高速运输时还能保持高能效,这一特征很适合肌肉的收缩功能。这些研究有助于理解分子马达之间的协作机制以及不同类型肌肉结构差异和功能差异的内在联系,也能为设计高效的人造分子马达系统提供一定的理论参考。