论文部分内容阅读
电化学是研究电和化学反应相互关系的科学,它主要研究电能与化学能相互转化的过程。探明电极/电解液界面的基本物理化学性质是认识、控制和利用电化学过程的基础。电催化是表面电化学研究的重要方面,其研究热点包括燃料电池相关的CO、甲醇等催化氧化反应,以及环保相关的NO催化还原反应等。由此,对具有高催化活性的Pt族金属电极表面上的吸附结构与反应过程进行多角度和多层次的详尽分析研究,将具有重要的科学意义和应用前景。近三十年来,为了从分子水平上深化对电化学界面的认识,各类谱学技术和扫描探针技术被引入到原位(in-situ)电化学研究中,使电化学研究从宏观向微观、由统计平均向分子水平不断发展;以此同时,时间分辨的动力学研究也进入亚微秒的水平。在这些现场方法中,表面增强振动光谱尤其是表面增强拉曼光谱(SERS)的贡献巨大,特别是近十年由于高性能拉曼谱仪的逐渐普及以及特殊纳米结构金属表面的涌现,电化学SERS被广泛应用于电极/电解质界面结构和性质的研究。以此相对比,比它晚出现的表面增强红外光谱(SEIRAS)由于其表面增强因子远小于SERS,一直没有受到广泛的关注而发展较慢,无论是其技术本身的进步及在表面电化学中的应用都远未达到与SERS可比的程度。实际上,红外吸收截面数量级为10-20 cm2 molecule-1,而拉曼散射截面数量级为10-29cm2 molecule-1,因而SEIRAS的检测灵敏度与SERS相当,某些时候甚至更高。特别是SEIRAS几乎可以在所有过渡金属表面均能获得与银、金、铜表面相近的增强效应,同时其表面选率简单,因而应具有更大的发展空间和新的应用前景。电化学衰减全反射表面增强红外光谱(ATR-SEIRAS),可以克服外反射模式红外光谱(IR-RAS)测量中的薄层电解质结构的诸多限制,有利于检测电极表面的吸附和反应,尤其适合于电极表面极性较高的小分子不可逆反应过程的时间分辨研究。将ATR-SEIRAS用于研究Pt族金属的电催化吸附与反应,可提供其它原位谱学技术难于提供的诸如参与界面反应的共吸附水等重要信息。如何制备具有SEIRA效应的金属薄膜是SEIRAS发展的瓶颈,对此我们提出了简易的“两步湿法镀膜”策略,使电化学ATR-SEIRAS技术全面拓展到Pt族金属表面。同时,由于该方法制备的金属膜为纳米颗粒金属薄膜,其表面结构比本体电极更接近实际催化体系。使用ATR-SEIRAS方法研究Pt族金属纳米薄膜电极表面的CO和甲醇氧化、NO还原以及电极界面共吸附水结构等,应有特别的参考价值。本论文主要围绕以下工作进行研究:自行设计了电化学原位-衰减全反射-表面增强红外光谱(ATR-SEIRAS)附件系统;将SEIRAS较全面地拓展到Pt族金属表面,并将其应用于CO和甲醇的吸附与氧化反应、NO的吸附及还原反应、共吸附水分子的可能界面结构,以及芳香小分子的吸附构型等研究。另外,初步研究了质子交换膜燃料电池(PEMFC)膜电极(MEA)的制备对单体电池性能的影响。具体主要内容和结果如下:1.提出“两步湿法镀膜”作为通用策略,制备具有SEIRA效应的Pt族纳米金属薄膜,为在Pt族金属电极开展电化学ATR-SEIRAS研究奠定了基础采用了简便易行的“两步湿法镀膜”,即在红外窗口Si半圆柱的底面上先通过化学镀镀上一层Au膜,然后采用合理电沉积方式在其上覆盖Pt族金属外层(Pt、Pd、Rh或Ru),成功地制备了具有SEIRA效应的Pt族金属纳米薄膜电极。使用电化学方法对上述Pt族金属(Pt、Pd和Rh)纳米薄膜进行测试,结果表明,镀层几乎无针孔,而且所得的各Pt族金属(Pt、Pd、Rh和Ru)纳米薄膜的电化学特征行为与本体金属一致,从而为与本体纯金属有可比性的电化学性质研究奠定了基础。另一方面,应用CO作为探针分子,对上述Pt族金属纳米薄膜的表面增强红外效应以及它在金膜基底上的覆盖程度进行了测试。结果显示该方法制备的Pt族金属纳米薄膜不仅几无“针孔”而且呈现极强SEIRA效应,增强效果超过其它方式制得的金属薄膜。同时吸附物种的吸收峰方向与定义的一致,不发生倒转,峰形单一,不出现所谓的“类-Fano”非对称双极峰扭曲现象,便于光谱的分析和解释,提高了结果的准确性。这些特性对现场ATR-SEIRAS的拓展应用至关重要。最后需指出的是,该“两步湿法镀膜”,作为一种通用的方法应用于在其它更多的过渡金属电极的ATR-SEIRAS研究,相关工作已由本实验室的其他同学相继展开。2.应用表面增强红外光谱研究燃料电池相关电催化基础反应(1)CO在Pt电极表面的吸附及氧化(a)UPD氢区0.1V下Pt电极表面CO的吸附及其氧化行为0.1 M HClO4溶液中,Pt电极上CO吸附开始时较分散,随着CO总覆盖度增加,CO的局部浓度开始升高,当COB和COL峰的红外总吸收达饱和吸附时的红外总吸收的19%左右(简称θCO-IR),发生界面自由水的共吸附(简称H2O共)。之后各分子之间发生相互作用,COB和COL发生强烈偶合,待CO吸附饱和时,形成了一个CO和H2O共的稳定共吸附层。该条件下形成的CO吸附层在氧化过程中,其H2O共均在CO氧化完成之前消失,对应的θIR要比吸附过程的高得多。若采用扫描电位方式氧化,H2O共消失时对应的θCO-IP约为40%;如采用电位阶跃氧化,相应的θCO-IR约为60%。以上CO生成和氧化过程的θCO-IR的差异,意味着这些H2O共优先参与了反应。动电位扫描过程,在0.54 V之前不发生CO氧化,而在0.45 V左右开始出现微弱的阳极电流,伴随着H2O共的νOH的同步缓慢减弱,由此可推测此阳极电流弱峰可能是H2O共在活性位上的电活化所致,这种预活化的水将直接参与CO的氧化。在0.1 V预吸附CO层的氧化过程是一个整体结构崩溃的过程,即各共吸附组分(COL、COB和H2O共)的局部覆盖度从氧化反应被激活之后就开始快速降低。反应机制更适合用“平均场近似模型”(Mean field approximation model)来描述。(b)双层区0.45 V下Pt电极表面CO的吸附及其氧化行为与前述吸附过程不同的是,该电位下CO在Pt电极上的吸附一开始时就表现为聚集吸附的过程,即虽然CO总体覆盖度不高,但是局部的CO浓度较高,几乎一开始吸附就检测到H2O共。当CO吸附达到饱和时,CO的局部浓度也没有发生太大的改变,吸附过程类似“成核生长”,形成CO和水的共吸附层结构较稳定。氧化过程中各吸附物种几乎同步减小和消失,各谱峰形状、频率及半峰宽几乎不变。由此推测这一过程更适合于用“成核生长模型”(Nucleation and growth model)来描述。总的来看,Pt电极表面CO氧化过程依赖于CO的吸附电位区(UPD氢区或双层区),并且CO的氧化过程动力学特征与其对应的吸附过程的动力学特征具有相似性。(2)CO在Rh或Pd电极及CH3OH在Pt电极表面氧化初探在0.0 V预吸附的CO在Rh电极氧化过程类似于0.45 V预吸附Pt电极上CO的氧化过程;而在Pd电极上CO氧化开始时各谱峰的频率、半峰宽变化不大,但后期可发生COB向COT转移;结合电化学循环伏安扫描和ATR-SEIRAS光谱同步测量,获得了甲醇在Pt电极表面按双路径机理氧化及不同电位区间的表面吸附物种的信息。3.利用ATR-SEIRAS研究NO在Pt族电极表面的吸附和还原行为(1)NO在Ru电极表面的吸附和还原研究Ru电极预吸附NO在0.1 M HClO4中只呈现1874-1840 cm-1的谱峰,归属为与氧共吸附的线性NO或吸附在Ru氧化物表面的NO(表示为v2(O)-NO物种)。在负向电位扫描过程中,并未发现NO吸附在还原态Ru表面的红外吸收峰(v2-NO),这说明包括NO分子和共吸附氧物种在内的v2(O)-NO物种作为整体被还原的,即并非分开独立进行还原的。光谱结果还表明,v2(O)-NO物种在还原过程中可能存在快速扩散的行为;或者在整个电极表面的任何区域的v2(O)-NO物种同时发生还原反应,导致v2(O)-NO物种的覆盖度在还原过程中表现为快速均匀的降低过程。Ru在溶液中含有HNO2的0.1 M HClO4条件下,SEIRAS光谱中可以观察到1886-1850 cm-1左右的v2(O)-NO物种的红外吸收峰,以及1520-1578 cm-1左右的与氧共吸附的三重吸附NO(v1(O)-NO)的红外吸收峰。在负电位区观测到的1740-1790 cm-1的谱带可归属为NO线性吸附在还原态Ru上v2-NO物种。在阳极扫描的0.0到0.3 V之间v2(O)-NO峰的积分强度为零,这说明在该条件下Ru表面氧化物在0.0到0.3 V之间几乎可以完全被还原。当电位高于0.35 V,电极表面开始生成氧化物种,v2-NO物种随即开始转换为v2(O)-NO物种。(2)预吸附单层NO在Pt电极表面的吸附和还原研究SEIRAS光谱研究发现了1760-1737 cm-1和1609-1524 cm-1的两个谱带。前者归属为线性吸附的NO分子(NOL)的红外吸收峰;后者可归属为双桥式吸附的NO分子(NOB)的红外吸收峰。试验结果表明,在电化学条件下,预吸附NO的还原并不是一个结构敏感反应,而是一个吸附位敏感的还原反应。即NOL和NOB的还原是完全分步的过程,并且在还原过程中并没有发生吸附位的转移现象。(3)预吸附单层NO在Pd电极表面的吸附和还原研究在Pd电极表面可获得三个NO的红外吸收峰:1770-1724 cm-1可归属为线性吸附的NO分子(NOL)的红外吸收峰;1690-1572 cm-1可归属为双桥式吸附的NO分子(NOB)的红外吸收峰。1548-1487 cm-1为三重吸附的NO分子(NOM)的红外吸收峰。实验结果还表明,在电化学条件下,Pd电极表面预吸附NO还原也是一个吸附位敏感的还原反应,即NOL、NOB和NOM还原是分步过程,但是在NOB的还原过程中,明显地发生从NOB到NOM吸附位的转变。4.芳香小分子在Pt电极表面的吸附行为的增强红外光谱研究研究了HClO4溶液中对硝基苯甲酸(PNBA)和KClO4溶液中吡啶(Py)在Pt电极表面的吸脱附。研究结果表明在较高电位下(约0.3~0.7 V)PNBA是通过-COOH脱去质子之后的-COO-吸附在Pt电极表面,并且两个氧原子几乎是等位地吸附在Pt电极表面,分子平面几乎垂直或以某小角度倾斜于电极表面。PNBA从约0.35 V以负电位开始脱附,脱附中间电位为0.2V。在0.1~-0.1 V区间,吸附PNBA分子中羧基的一个氧原子可能脱离电极表面,另一个氧原子可能以某种方式与Pt-H表面相结合。至于吡啶在Pt电极上的吸附,在相当宽的电位区间内(0.4~-0.4 V),吡啶在Pt电极上的吸附主要是通过N原子的孤对电子及脱氢后的α碳原子共同与Pt电极表面成键,并且分子平面与电极表面几乎是垂直或以某一小角度倾斜于电极表面,即采取edge-on而非end-on吸附构型。5.Pt族电极界面H2O共分子结构的SEIRAS初探(1)Pt族电极界面与CO共吸附的H2O共的ATR-SEIRAS特征我们在Pt、Pd、Rh和Ru电极表面都获得了IRAS难于检测到的H2O共振动谱峰。3631-3658 cm-1谱带被指认为共吸附单体水(水分子摆脱了通常的氢键作用,也称为自由水)的伸缩振动νOH,而1626-1633 cm-1为剪式振动峰δ(HOH)。当电位正移至使CO氧化脱附的电位时,此单体水的特征峰也消失。这其中,电极材料较明显地影响ν(OH)的振动频率,如ν(OH)分别为3643 cm-1(Ru)、3631 cm-1(Rh)、3648cm-1(Pd)和3658 cm-1(Pt);而δ(HOH)频率受电极材料影响小,均在1630 cm-1附近。δ(HOH)谱峰易受到近电极表面其它水分子的干扰。(2)溶液中的卤素离子对Pt电极上CO和H2O共吸附结构的影响CO氧化之前,加入Cl-对CO和H2O共峰影响较小。只有在发生CO氧化后才观察到与Cl-共吸附水的吸收峰,其ν(OH)和δ(HOH)分别位于3568和1622cm-1。Cl-的竞争吸附一定程度上抑制了CO的氧化过程。Ⅰ-的加入在红外谱图上出现了3652 cm-1、3610 cm-1、3485 cm-1的ν(OH)及1637cm-1左右的δ(HOH)吸收峰。3652 cm-1的谱峰可归为与CO共吸附的‘Ⅰ’类自由水的νO-H;3610 cm-1为与Ⅰ-离子共吸附的‘Ⅱ’类自由水ν(O-H);3485 cm-1为在‘Ⅰ’和‘Ⅱ’类水外围更多的还有氢键作用的‘Ⅲ’类水分子。而1637 cm-1应更多的为‘Ⅲ’水的δ(HOH)贡献。Ⅰ-的强吸附导致部分CO非氧化性脱落。(3)极端析氢电位条件下Pt电极表面的CO和水共吸附结构初探0.1 V或0.45 V下预吸附的CO,在经历强烈析氢后氧化的动力学过程分别与预吸附的CO直接进行氧化的动力学过程一致,说明CO与水的共吸附层结构稳定,以及氢析出主要发生在CO吸附层的缺陷空位Pt原子。在强析氢的条件下,COB和H2O共的谱峰明显改变。对H2O共而言,δHOH的同时随COB谱峰增加,而νOH的强度几乎不变。在更负的电位条件下,大量的气泡甚至可导致界面水部分脱离电极表面的现象,并造成了少部分COL和少部分H2O共脱落。电位正扫,H2O共依然存在,直到CO彻底氧化为止。δHOH的振动峰提前消失,表明其对外层环境的影响更敏感。在更负电位条件下,高频段(νOH)的谱峰拟合得到3640 cm-1、3498 cm-1和3373 cm-1的三个谱峰。这三个谱峰分别对应于自由水H2O共、紧邻外层水(氢键部分解离)及外层类冰结构的界面水。6.低Pt载量的质子交换膜燃料电池的研制在新的还原体系中合成了高分散、Pt粒径2-5 nm、高催化活性的Pt/C催化剂。开发了低载铂量(0.15 mg cm-2)、超薄MEA(催化层厚10μm左右)制备技术,从而使电池性能有较大改进(自制催化剂在:室温;H2:0.03 MPa;O2:0.05 MPa;载铂0.15mg cm-2的条件下,电池单体功率密度达0.17 W cm-2。