【摘 要】
:
变分不等式问题与不动点问题的公共解研究在数学模型、图像恢复、网络资源分配和信号处理等实际问题中得到了广泛的应用.本文研究了在实Hilbert空间中的Mann惯性次梯度外梯度法和Mann惯性Tseng外梯度法,分别求解拟非扩张映像和渐近非扩张映像的不动点问题与伪单调变分不等式问题的公共解,建立相应的算法强收敛定理,使得本文的研究结果更简洁明了.本文的内容分为四章,具体如下:第一章,给出了变分不等式问
论文部分内容阅读
变分不等式问题与不动点问题的公共解研究在数学模型、图像恢复、网络资源分配和信号处理等实际问题中得到了广泛的应用.本文研究了在实Hilbert空间中的Mann惯性次梯度外梯度法和Mann惯性Tseng外梯度法,分别求解拟非扩张映像和渐近非扩张映像的不动点问题与伪单调变分不等式问题的公共解,建立相应的算法强收敛定理,使得本文的研究结果更简洁明了.本文的内容分为四章,具体如下:第一章,给出了变分不等式问题与不动点问题的研究背景和国内外研究现状.第二章,提出了Mann惯性次梯度外梯度法,对Duong等[18]提出的Mann修正次梯度外梯度法加入了惯性参数δn,将线搜索步长λn改进为φn,以此提高算法的收敛速度.同时,本文将Duong等[18]研究的单调变分不等式问题推广为求拟非扩张映像不动点问题与伪单调变分不等式问题的公共解,使得算法更一般.另外,在适当的条件和参数下,本文建立了Mann惯性次梯度外梯度法的强收敛定理.第三章,引入了Mann惯性Tseng外梯度法,改进了Uzor等[40]中的惯性迭代步rn,从而提高算法的收敛速度.同时,本文将Uzor等[40]中的半压缩映像U改为渐近非扩张映像T,得到的结果更清晰明了.除此之外,在适当的条件和参数下,本文建立了Mann惯性Tseng外梯度法的强收敛定理.第四章,给出了本文的总结和展望.
其他文献
本文研究的是带有一个弱边界层和一个激波层的一维非线性粘性抛物方程的渐近极限问题.文章主要采用多尺度匹配渐近展开的方法,配合截断函数构造粘性方程的近似解,并通过误差方程的~1估计,证明在远离弱边界层和激波层处粘性方程的解一致收敛于光滑的无粘方程的解.
在20世纪50年代,两位著名学者Kolmogorov和Sinai首先提出了熵概念以后,熵理论一直是动力系统的核心课题之一.拓扑熵是度量一个拓扑动力系统复杂度的重要不变量.对于直线上的微分同胚,何宝林引入了长度增长率并证明了当系统具有非负长度增长率时,熵等于长度增长率.同时,该文引入了一致拓扑双曲性,进一步化简了熵的计算.该文的长度增长率和一致拓扑双曲性都适用于直线上的同胚系统.所以,我们将该文的相
同步是指不同进程在时间上的一致或相关,神经网络的同步包含很多,其中包括正同步;反同步;有限时间同步;固定时间同步等等。近年来,神经网络同步研究得到了广泛的关注,并且得到了很多很好的结果。本文受到前人研究的启发,研究了两类神经网络模型,通过Filippov微分包含理论及Lyapunov稳定性理论,并且构建相应的控制器,来分别得到他们的同步理论判据。本文主要思路如下:对于第一类神经网络模型,主要研究时
本文主要研究了一类来自河流生态学的两种群竞争模型.首先,针对单个方程情形,通过临界区域长度和临界水流速度给出了单个种群灭绝、持续生存的充要条件.其次,针对两个种群竞争模型,一方面借助主特征值理论给出了半平凡稳态解的局部稳定性;另一方面通过非线性分析证明了系统没有正稳态解.最后,结合单调动力系统理论,给出了系统的全局动力学.我们的结果表明在开放的对流环境中,如果上游流入率和下游流出率满足一定的条件时
本文主要是研究一类随机SIRS传染病模型的动力学行为,全文共分为三章.第一章首先介绍了相关的生物数学背景以及研究现状,其次给出了随机分析以及随机微分方程的一些预备知识.第二章分析了一类具有广义Logistic增长率的随机SIRS传染病模型的动力学行为.具体来说,我们首先引入研究的模型,并且给出适当的条件.其次,我们利用随机微分方程的基本理论、停时技巧以及It(?)公式证明了全局正解的存在性和唯一性
本文主要利用Leray-Schauder非线性二择一定理、锥不动点定理,研究了一类具有扰动的积分边界条件的非线性奇异微分系统正解的存在性和多重性问题,并给出了此类问题正解存在的条件.全文一共分为以下三章:第一章是引言,主要介绍本课题的研究背景与现状、研究对象.第二章是预备知识,主要介绍本文将要用到的基本理论知识,包括线性常微分方程边值问题的相关结果及证明中用到的主要定理.第三章是主要结果,第一小节
反应扩散方程的定性研究在很大程度上依赖于空间区域,常见的空间区域有三类:有界固定区域、演化区域、无界固定区域.本文研究一维演化区域中反应扩散方程解的渐近行为,给出周期演化区间和周期增长区间中解的一般收敛性结果.进一步,对于周期区间中双稳定型和燃烧型的反应扩散方程,我们将证明解收敛于0或小周期解或大周期解这样的三分性结果.对于周期增长区间中的问题,我们将证明解在演化边界附近收敛于半波解.
本文研究了在实Hilbert空间中,变分不等式问题(VIP)和不动点问题(FPP)的公共解问题.提出了两类新的算法,第一类算法是基于次梯度外梯度法的自适应惯性次梯度外梯度法,用于研究具有Lipschitz伪单调映像的VIP与有限多个非扩张映像和一个半压缩映像的公共不动点问题(CFPP)的公共解问题;第二类算法是基于Tseng外梯度法的自适应惯性Tseng外梯度法,适用于伪单调VIP和渐近非扩张映像
本文用一阶平均法研究了二次等时中心系统S1和S4在分段光滑二次多项式扰动下所产生的极限环个数,证明了当一阶平均函数不恒为零时,在S1的一个周期环域最多产生7个极限环,在S4的中心点附近可以产生6个小振幅极限环.
本文主要研究了 n维欧式空间中超平面系统两点边值问题以及周期边值问题解的存在性.第一章简述了常微分方程与偏微分方程等微分方程边值问题的研究背景及意义,对本文的研究内容及主要结论进行了概述.第二章关于超平面系统两点边值,我们只讨论良序上下解情形下系统解的存在性.我们定义了该问题的下解和上解,对边值条件lA和lS分别为“均不为垂直线”、“不均为垂直线”、“均为垂直线”这三种情况下超平面系统解的存在性进