论文部分内容阅读
我国核电发展迅速,对乏燃料贮运容器需求快速增加。与其他材质的贮运容器相比,球墨铸铁核乏燃料容器具有高完整性、优良的辐射屏蔽性能、明显的经济性等优势。本课题所研究百吨级球墨铸铁核乏燃料容器(以下简称球铁核乏燃料容器)壁厚520mm,重约135t,属于超大断面球墨铸铁件。具有凝固时间长、偏析严重、缩孔和缩松产生倾向大等特点,生产技术难度大。本课题通过对百吨级球铁核乏燃料容器铸造工艺进行模拟、设计45°扇形试块并测量其凝固温度场、解剖45°扇形试块并分析其组织和性能,得出结论如下:(1)砂型铸造工艺凝固时间长达50.64h,明显不能满足球铁核乏燃料容器的要求;砂型冷铁铸造工艺虽然加快了容器铸件的凝固速度,但是凝固时间依然长达25.88h,也不适合;采取金属型铸造工艺,球铁核乏燃料容器的凝固时间缩短至3.49h,缺陷数量和分布也最少,所以球铁核乏燃料容器采用金属型铸造工艺;(2)利用自主研制的16通道测温系统成功的测得45°扇形试块的温度场与铸型温度曲线,模拟结果与实际测温结果基本一致(误差为2%),现行的模拟软件可以用来优化大型球铁核乏燃料容器的铸造工艺;(3)45°扇形试块实验中,最后凝固位置是内1/4处,并不是试块中心,冲击性能薄弱环节出现在内1/4位置;研究还发现大断面球墨铸铁件凝固温度并不是1147℃,而是在1147℃~1080℃区间内进行凝固;(4)在45°扇形试块实验研究中,通过一系列质量控制措施,45°扇形试块最长凝固时间为 3.42h、球化率≥85.1%、基体为全铁素体,Rm≥371MPa、RP0.2≥233MPa、A≥19.5%、-40℃ax≥5.4J/cm2,组织与性能均达到球铁核乏燃料容器的要求,表明在国内现有技术条件下可以达到国外球铁核乏燃料容器性能指标;(5)石墨球个数对屈服强度、抗拉强度、伸长率等常规力学性能指标影响不大,但对冲击性能影响较大,尤其是-40℃低温冲击性能;为保证球铁核乏燃料容器各项性能指标满足要求,除了采取优选原材料、严格控制微量元素含量、合适的球化和孕育处理工艺等措施外,还应该采取措施进一步加快铸件的冷却速度,使其在在3.5h内凝固,保证石墨球个数≥50/mm2;(6)对球铁核乏燃料容器的铸造工艺进行优化后,在球铁核乏燃料容器的器身部位采用300mm金属型+300mm冷铁工艺,顶部热节部位采用450mm金属型+450mm全冷铁工艺,不仅可以保证球铁核乏燃料容器在3.5h内凝固,还能使器身部位与热节部位的凝固温度场相协调,保证球铁核乏燃料容器的组织和性能一致性;(7)45°扇形试块测温与解剖分析结果应用在百吨级球铁核乏燃料容器的铸造工艺优化与方案设计,取得了良好的效果,百吨级球铁核乏燃料容器在实际生产过程中凝固热量更多、凝固条件更为复杂,要保证获得的百吨级球铁核乏燃料容器各项指标达到国外容器要求,还需要大量深入的研究。