基于纳米压痕的微观结构对γ-TiAl合金力学性能影响的研究

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:chenyanchendan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着精密/超精密加工技术的迅速发展,金属材料在纳米尺度下的力学行为受到普遍关注。γ-TiAl合金凭借其优异的力学性能被广泛应用于航空航天和汽车制造等行业,但其在纳米尺度下的变形机制尚不清楚。考虑到纳米尺度下微观结构对材料塑性变形和力学性能有较大的影响,鉴于宏观实验受条件和成本限制且很难捕捉材料内部微观结构的演化过程,因此本文采用分子动力学方法对不同晶粒尺寸、孪晶界间距和晶体结构的γ-TiAl合金进行了纳米压痕研究,讨论了不同微观结构下γ-TiAl合金的力学性能,并结合缺陷演化过程揭示了γ-TiAl合金形变机制与力学性能的内在联系。主要研究内容如下:(1)研究了不同晶粒尺寸下γ-TiAl合金的纳米压痕过程,揭示了晶粒尺寸对γ-TiAl合金力学性能及变形行为的影响。模拟结果表明:当晶粒尺寸小于9.9 nm时,晶粒尺寸与硬度表现出反Hall-Petch关系,位错和晶界活动共同促使材料发生塑性变形,晶界活动起主导作用。当晶粒尺寸大于9.9 nm时,晶粒尺寸与硬度符合Hall-Petch关系,晶界对材料变形影响较小,位错主导基体发生塑性变形。另外,分析了γ-TiAl合金在压痕过程中的应力传递和形变恢复过程,发现致密晶界网格结构能够有效抑制压痕缺陷及内应力向材料内部传递;晶粒尺寸越小,压头下方的内应力分布越均匀,沿压痕方向的弹性恢复比越小。(2)研究了不同孪晶界间距下纳米孪晶γ-TiAl合金的纳米压痕过程,揭示了孪晶界间距对γ-TiAl合金力学行为的影响。分析发现:当压痕深度较小时,基体平均硬度值变化与孪晶界间距大小呈反比,孪晶间距越小,孪晶强化作用越显著;而当压痕深度大于14?时,基体的临界孪晶间距出现。当孪晶界间距小于2.8 nm时,基体的塑性变形机制由孪晶界弱化作用主导;当孪晶界间距大于2.8 nm时,孪晶界强化作用主导基体塑性变形。另外,分析了温度变化对γ-TiAl合金力学性能影响,发现硬度和弹性模量均随温度升高而减少,且呈线性相关。(3)模拟并讨论了单晶、多晶和纳米孪晶γ-TiAl合金的纳米压痕形变过程,分析了晶体结构变化对材料力学行为的影响。模拟结果表明:单晶、多晶和纳米孪晶γ-TiAl合金的硬度、弹性恢复比、温度和势能变化都依赖于晶体结构。单晶基体塑性变形主要以肖克莱位错的扩展和反应为主,并伴随位错环的产生;多晶基体依赖位错与晶界相互作用,纳米孪晶基体依赖位错-孪晶、位错-晶界相互作用。单晶基体硬度最大,纳米孪晶基体次之,多晶基体最小。另外,分析了不同晶体结构γ-TiAl合金应力传递过程,发现孪晶和晶界能有效吸收和阻碍应力传递。
其他文献
根据新型基础设施建设项目,特高压输电、城际高铁及轨道交通发展成为首要目标。作为导电性能最好的铜金属强度不足,合金化又使纯铜电导率下降严重,为探寻强度与电导率的匹配,本课题以Cu0.4Cr0.3Zr合金为研究对象,采用室温及液氮环境进行不同路径ECAP,变形后合金在450℃下时效不同时长。运用OM、XRD、EDS、SEM、EBSD及显微硬度测量等技术对不同状态下合金的性能进行表征,分析了不同因素对合
桥梁作为道路交通系统的重要组成部分,其安全服役至关重要。随着交通荷载的持续增加,大多桥梁出现了不同程度的损伤和劣化,有些损伤直接影响运营安全。近年来,桥梁安全事故频发,不仅造成大量生命财产损失,也引起了社会恐慌,因此,开展桥梁健康监测与损伤识别的研究尤为迫切重要。本文基于目前桥梁损伤识别的研究现状,在前人研究的基础上,以影响线为切入点,提出利用对称测点的位移和转角影响线差值及其差值曲率作为损伤识别
非晶合金原子排布呈现短程有序、长程无序的特殊结构,其内部不存在晶界、位错等微观缺陷,从而使这类材料拥有一些优异的力学、物理和化学性能。随着海洋资源的开发,人们对在海洋环境中服役装备的耐腐蚀性将提出更高的要求,寻找并探索一些新型的耐腐蚀性替代材料成为必要。非晶合金具有较高强度、硬度以及耐腐蚀性在海洋工程中具有广阔的应用前景。本文针对具有较高断裂韧性和较大玻璃形成能力的Zr基非晶合金,研究其在模拟海水
镁合金因其低密度,高比强度,良好的生物相容性,在汽车轻量化、航空航天和医疗装备等领域具有广泛的应用前景。但因其平衡电位较低,化学活性高,极易与第二相形成电偶腐蚀,从而显著降低合金的耐蚀性,这也极大的限制了工程化应用。表面改性技术可通过减小合金晶粒尺寸,改善第二相性质(形貌、尺寸、数量和分布),提高合金的腐蚀及力学性能。因此,本文制备了铸态Mg-12Dy-1.1Ni(wt.%)合金,分别通过微束等离
我国低等级公路里程数长,路面开裂、沉陷等结构性破损严重,这些公路往往没有可供分流交通的其它道路,因而,路面维修养护不能长时间中断交通,找一种成本较低,能快速通车的路面养护材料有重要的工程意义。天然砂砾来源丰富、价格低廉,通常在其中掺加一定数量的石灰、水泥、粉煤灰等无机结合材料用作低等级公路路面基层、底基层的维修养护材料。基于硫铝酸盐水泥快硬早强、凝结时间短、抗冻、环境适应性广等特点,在快速修补工程
随着我国桥梁老化问题日益突出,桥梁损伤识别和健康监测已经成为未来桥梁发展的重要方向。基于结构振动特性和智能算法等理论的损伤识别方法已经得到很大的进展,但是,桥梁的损伤识别仍然存在很多难点,如实测完备信息获取难度大,环境噪声影响大,结构损伤程度定量分析难等困难。所以本文基于前人研究和结构损伤识别现状,结合信息熵,模态应变能和智能算法理论的优势进行了结构损伤定位分析与定量分析,相关研究如下:(1)对传
Co-Al-W高温合金是由L12结构γ′-Co3(Al,W)相强化的新型钴基高温合金,Co-Al-W合金具有较高的高温强度与抗氧化性能。与镍基高温合金通过反相畴界强化不同,钴基高温合金强化方式是共格强化,其强化相和基体相错配度接近1%,变形能力较差,成为Co-Al-W合金研究的方向之一,B元素可以有效提高合金的韧性,Ce元素是较好的晶界强化元素,可以有效提高晶界强度,抑制晶界脆断。本文基于课题组前
目前的公路发展已进入建养并重的阶段,将养护过程中产生的沥青路面回收料(Reclaimed Materials from Asphalt Pavement,RMAP)用于基层修复重建,可改善再生材料利用率低、造成资源浪费与环境污染的问题。基层的开裂大多因其材料特性引起结构损伤,通过在二次利用RMAP的基础上研究冷再生基层技术来提高冷再生基层的使用寿命,向可持续发展方面的探索成为亟待解决的问题。因此,
桥梁在交通运输系统中扮演着重要的角色,随着我国在桥梁建设方面取得举世瞩目的成就,桥梁的病害也越来越多。对其管理运营变得越来越重要,其安全性、耐久性和使用性能逐渐受到人们的重视,要想到达让桥梁长期健康的运行下去,对其结构的健康监测是必不可少的项目。在这过程中,利用好监测数据是工程师面临的挑战,对于易得的、能反映出结构整体状态信息的位移影响线来说,成为对桥梁状态快速评定的一种指标,并发展出相应的研究。
近年来,随着西部大开发和交通建设的快速发展,穿越我国西部盐渍土地区的高速公路逐渐增多。特别是在西北的季节性冻土区,盐渍土的冻胀对路基稳定及安全性的影响较为严重。柳敦高速公路是进出敦煌市的另一条便捷快速通道,该段高速公路左幅道路是在既有道路的基础之上改建,路基下部的防水措施效果较差;右幅道路为新建公路,路基下面的防水措施完备。由于左幅道路处于疏勒河上游,每年疏勒河的季节性生态水会以渗流的方式从左幅向