基于微电极技术研究阴极电位对硫酸盐还原菌腐蚀行为的影响

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:xulingxuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
腐蚀是造成金属材料失效的主要原因之一,而阴极保护技术作为腐蚀防护的有效方法被广泛应用。在硫酸盐还原菌(SRB)等微生物存在的条件下会导致阴极保护电位失效使得腐蚀持续发生。目前,研究阴极电位与微生物腐蚀之间的相互作用关系主要以大面积的电极材料为主,无法清晰的观察单一或少量微生物的局部腐蚀行为。因此,本文利用直径为100μm的铁丝设计并制作了微型电极,从微观角度研究了阴极电位与微生物之间的相互作用机制。首先,在开路电位(OCP)和-0.75VSCE弱阴极电位下,研究了SRB对微电极腐蚀行为随时间(1、3、7天)的变化规律。结果表明,随着时间的增加,溶液中浮游SRB细胞数量逐渐增加。弱阴极电位对溶液中浮游SRB细胞的生长具有促进作用,OCP条件下更加有利于SRB生长和附着在微电极表面。随着时间的增加,弱阴极电位促进了SRB对微电极的腐蚀。其次,在-0.85VSCE、-0.95VSCE和-1.05VSCE阴极电位下,研究了SRB对微电极腐蚀行为随阴极电位的变化规律。结果表明,-0.85VSCE阴极电位下,微电极表面附着的SRB呈现出规则排列的特征,-0.95VSCE阴极电位抑制了SRB在电极表面的附着,对微电极的保护效果较差,产生了点蚀。-1.05VSCE的强阴极电位促进了SRB在微电极表面的附着。随着阴极电位的负移,加速了SRB对微电极的腐蚀行为。最后,在OCP和-0.85VSCE阴极电位下,研究了SRB对微电极腐蚀行为随碳源浓度(1%、10%和100%)的变化规律。结果表明,OCP条件下,当碳源浓度为1%时,微电极表面形成了较大的点蚀凹坑。在-0.85VSCE阴极电位下,碳源浓度为10%时,微电极表面产生了严重的点蚀。在碳源浓度为1%时,-0.85VSCE阴极电位对微电极起到了良好的保护效果。
其他文献
实践中,工程系统(如飞机控制系统,化工或机械系统)通常会遇到一些故障,可能造成很严重的后果。由于大多数系统通常需要较高的可靠性和可维护性,因此故障诊断问题引起了广泛关注。故障诊断一般包括故障检测和故障分离。基于解析模型的故障检测与分离方法能够根据系统模型得到系统运行的状态信息,得到了更深入的研究。在解析模型的基础上,一些学者们提出了基于观测器和滤波器的故障检测与分离方法。但是由于系统模型的不确定性
学位
语音信号是人类信息传递的重要介质,包含了大量的信息,有要传递的文字内容,还蕴藏着我们的情感表达。随着人工智能研究的不断发展,通过语音进行人类的情感识别是科技进步的重要体现,具有非常重大的现实意义。语音情感识别主要是通过对携带有人类情感特征的语音信号分析研究判别人类各种情感变化与类别。其识别过程是使用采集承载人情感信息的语音信号,通过计算机的分析识别,完成对预先设定的几种情感进行判别分类。传统浅层的
学位
振动送料器广泛应用于电子、3C和轻工业等领域的自动化生产和装配中。随着工业自动化和智能化程度的不断提高,在生产装配环节中,对物料供应方式的柔性化要求也越来越高,例如实现物料的多方向传输、堆积物料的分离等。然而,传统振动送料器由于其送料原理和结构所限,无法满足这一新兴需求。本文针对以上问题,以工业市场需求为导向,提出了一种能够实现物料柔性化供应的振动送料系统。本文主要研究内容总结如下:(1)设计了柔
学位
NiTiFe记忆合金因发生热致B2(?)R(?)B19’与力致(B2+R)(?)B19’正逆马氏体相变,可呈现双程记忆效应与超弹性,但呈现双程记忆效应所必需的内应力,需采用预变形训练而影响其应用;同时,R相在加载初始阶段发生变体取向,造成卸载后存在残余应变,而损伤其超弹性。对此,本文设计与制备了Nb纳米线/NiTiFe记忆合金复合材料,试图利用Nb纳米线与NiTiFe基体之间应力耦合,获得无需训练
学位
奥氏体不锈钢具有优良的耐蚀性能,目前广泛应用于石油化工、航天航空、新能源以及核工业等领域。但在其服役过程中,应力腐蚀开裂(SCC)和氢脆(HE)往往是造成其过早失效的重要原因。因此,在一些苛刻的服役环境中,人们往往通过选用镍基合金,或镍含量较高的超级奥氏体不锈钢来预防失效事故,使成本大幅增加。在奥氏体不锈钢中,当镍元素达到一定量后能显著延长奥氏体不锈钢在应力腐蚀及含氢环境下的服役寿命,但具体的作用
学位
在现代战争中,随着作战服和防弹衣的性能提升,躯干和四肢受伤的概率有所减少,但肢体结合部位(腋窝、腹股沟、颈部)由于缺乏有效防护,受伤的概率则大大增加,这些部位分布着大动脉,伤及处往往会伴随着大动脉的破裂导致大出血,对于这些特殊部位的大出血,常规的传统止血装备无法发挥有效止血作用。针对以上止血难题,国内一研究团队提出了一种弹性展开结构的方法,本论文利用Ni Ti形状记忆合金优异的力学性能和超弹特性,
学位
人们生活中对油气资源的依赖与日俱增,所以油井的稳定性至关重要。新型的自膨胀封隔器逐渐取代了传统封隔器,大大提升了完井效率,降低了完井风险。作为其核心部件的原材料,吸水膨胀橡胶的开发及其吸水机理的研究尤为重要。开发出结构稳定、吸水能力强、强度高,可长期使用的吸水膨胀橡胶对油井的开采与开发具有非常重要的意义。丁腈橡胶是油气田中常用的橡胶之一,本文通过在丁腈橡胶以及氢化丁腈橡胶中加入不同的加工助剂,探究
学位
当今社会传统能源消耗严重,开发洁净无污染的氢能成为人们研究的热点。在全球“碳中和”的背景下,油气公司的绿色转型成为必然发展趋势。氢能与油气工业高度融合,中国石油计划在我国玉门油田布局可再生能源制氢产业与试验基地。研究发现光解水是用来产氢的一种有效手段,该技术清洁方便。ZnS形貌多样、价带和导带位置适宜以及光电性能优异,可用来光催化产氢。但是较窄的光响应范围和较短的载流子寿命限制了它的应用。本论文围
学位
智能化时代下,说话人识别技术可以为用户带来更具个性化的生活服务。目前,以深度学习为理论框架的说话人识别的研究取得了重要性的突破。然而,说话人识别系统的性能在实际应用中仍然面临着挑战。尤其是噪声问题,已成为阻碍说话识别技术未来商业化发展的重要因素。因此,本文围绕噪声环境下如何保持说话人识别性能的问题展开讨论,主要工作内容如下:(1)提出了一种基于边缘粒子滤波(RBPF)与深度置信网络(DBN)融合的
学位
随着城市建设的快速发展,施工机械施工时不慎将地下电缆挖断的事故频繁发生,严重影响居民生活和工农业生产,如何防止施工机械对地下电缆的破坏具有重要意义。本文提出了一种基于振动信号处理的地下电缆保护方法,根据施工机械工作时的地面振动信号,实现地下电缆的保护预警,本课题主要工作如下:(1)地面运动目标识别研究。本文首先分析了基于过零分析的地面运动目标识别方法,接着提出了一种基于LMD和多特征选择的目标识别
学位