论文部分内容阅读
分数阶微积分将微积分阶次从常规整数域推广至实数甚至复数域,是整数阶微积分的推广。分数阶控制是以分数阶微积分算子和分数阶微分方程理论为基础发展起来的一个新的研究方向。实践证明,分数阶微积分在控制理论中的应用可以产生比整数阶微积分更好的结果,分数阶微积分为将来扩展控制理论经典研究方法和更好解释现有结果提供了强大的支持。本文针对控制理论发展的需要,选择分数阶微积分作为新的研究工具,从分数阶系统分析、分数阶系统辨识、分数阶控制器的设计及分数阶算子的有理逼近等四方面进行了研究。主要工作有:(1)分数阶系统的传递函数一般不再是复变量s的有理函数,因而分数阶系统的分析要比整数阶系统复杂得多。本文对两类分数阶系统进行了分析。首先,针对一类与传统一阶系统传递函数结构类似的分数阶系统,推导出了该类系统稳定的参数取值范围,并分析了不同时间响应与分数阶阶次的对应关系。其次,针对一类与传统二阶系统传递函数结构类似的分数阶系统,推导出了该类分数阶系统闭环稳定的阻尼比的取值范围(时域)。最后,对现有分数阶奈奎斯特稳定判据及对数频率判据进行了补充,然后用补充后的这两个判据对第二类分数阶系统进行了稳定性及相对稳定性分析(频域)。(2)分数阶微分算子的引入增加了额外的自由度,因此能更加精确地描述一些物理现象,但同时也使得分数阶系统的辨识问题更加困难。针对一类传递函数结构已知的分数阶系统,提出了一种采用粒子群优化算法同时对分数阶模型的参数和阶次进行辨识的方法,该方法具有较高的辨识精度。然后针对某电厂循环流化床锅炉主汽温对象在减温水流量扰动下的动态特性,给出了一种分数阶传递函数结构,并用粒子群优化算法对其进行了辨识。结果表明,分数阶传递函数模型在适应性及逼近精度上都要好于用同样方法辨识得到的整数阶传递函数模型。(3)分数阶PIλDμ控制器是传统PID控制器的推广,积分阶次λ和微分阶次μ的引入使得分数阶控制器具有更灵活的结构和更强的鲁棒性。针对输入受限和不确定性的非线性MIMO锅炉—汽轮机系统,设计了分数阶PIλDμ控制器,控制器参数整定采用粒子群优化算法。仿真结果表明,所设计的分数阶PIλDμ控制器在大范围负荷变化及存在参数、结构不确定性时均能取得满意的控制效果,显示良好的适应性及鲁棒性,与传统PID控制器相比具有明显优势。(4)由于分数阶微积分算子通常是复变量s的无理函数,不能直接实现,一个直接的方法就是用高阶的有理传递函数来对其进行逼近。ORA方法是一种典型的在一定频率范围内对分数阶算子进行有理逼近的方法,但是该方法在低频和高频端点处的拟合偏差较大。在ORA方法基础上,提出了一种基于粒子群优化的分数阶算子有理逼近方法。所用传递函数结构与ORA方法相同,但是分子分母的系数采用粒子群优化算法得到。仿真结果表明,该方法能取得相当高的逼近精度,尤其在频率边界处取得了比ORA法更好的逼近效果。