论文部分内容阅读
无速度传感器控制技术是轨道列车牵引传动控制核心技术之一,其工程化应用有助于提高牵引传动系统的可靠性并且降低系统的维护成本。本文针对轨道列车牵引感应电机的无速度传感器控制技术问题,围绕基于全阶自适应观测器的转速估算、无速度传感器下的带速重投策略、低速区域转速辨识性能提升展开了深入研究,研究成果总结如下。
提出了基于全阶自适应观测器的改进转速估算策略。首先,分析了在低开关频率下传统离散方法导致的高速区域转速辨识不稳定的问题,推导了改进的全阶离散模型,采取将定子电流与转子磁链方程分别在不同坐标系下离散的策略,针对27种离散组合方式进行稳定性分析,从6种稳定组合中分析数字实现的难易程度选择合适的离散化方法;其次,设计了离散域下的反馈增益矩阵,并在同步旋转坐标系下完成转速自适应律的设计。
基于改进型转速估算策略,分析了改进后全阶自适应转速观测器的稳定性与参数敏感性。首先,在同步旋转坐标系下建立电流误差与转速观测误差之间的传递函数,根据朱利判据分析稳定性条件;其次,分析了全阶自适应转速观测器的参数敏感性,建立了离散观测器模型与连续电机模型相组合的敏感性分析数学模型,逐一分析参数变化对转速观测的影响。
基于双电流闭环直流注入方法,提出了无速度传感器控制下的快速带速重投策略。首先,分析了短时电力中断情况下旋转电机特性,建立了单电流闭环直流注入下旋转电机数学模型,分析了测量反馈电流频率估算电机转速的方法;其次,提出了基于双电流闭环直流注入下对转速辨识的策略,建立了直流注入下电机数学分析模型,设计了电压模型磁链观测器获取转子磁链信息,通过三阶带通滤波器完成对直流偏置以及噪声信号的滤除,然后对较低幅值交流信号进行归一化处理,设计了软件锁相环提取旋转电机转速;最后,设计了基于三阶段的带速重投策略,通过直流注入获取初始转速,利用转矩修正减小转速观测误差并且建立转子磁链,将转速估算初值代入全阶转速观测器,平滑并且快速实现带速重投。
基于无速度传感器控制下低速制动区域不稳定的现象,设计了低速区域转速辨识性能提升策略。首先,分析了低速制动区域转速辨识不稳定的机理,确定了不稳定的边界,提出了改进后的转速自适应律,分析了关键参数的设计,通过误差传递函数的零极点分析对改进后的转速辨识稳定性进行验证;其次,设计了感应电机的定转子电阻辨识策略,提出了一种在带速重投直流注入阶段独立工作的定子电阻辨识策略,定子电阻辨识与转速辨识同时工作,在直流注入结束时获取定子电阻辨识值与初始电机转速;最后,设计了高频电流信号注入获取电机等效电阻的方法,提出了参数辨识配合逻辑,进而设计了转子电阻的辨识策略。
本文搭建了牵引系统及控制模型并进行了大量仿真,基于地铁牵引传动平台与Typhoon半实物仿真平台,完成了实验验证,充分证实了上述无速度传感器控制策略的可行性与有效性。
提出了基于全阶自适应观测器的改进转速估算策略。首先,分析了在低开关频率下传统离散方法导致的高速区域转速辨识不稳定的问题,推导了改进的全阶离散模型,采取将定子电流与转子磁链方程分别在不同坐标系下离散的策略,针对27种离散组合方式进行稳定性分析,从6种稳定组合中分析数字实现的难易程度选择合适的离散化方法;其次,设计了离散域下的反馈增益矩阵,并在同步旋转坐标系下完成转速自适应律的设计。
基于改进型转速估算策略,分析了改进后全阶自适应转速观测器的稳定性与参数敏感性。首先,在同步旋转坐标系下建立电流误差与转速观测误差之间的传递函数,根据朱利判据分析稳定性条件;其次,分析了全阶自适应转速观测器的参数敏感性,建立了离散观测器模型与连续电机模型相组合的敏感性分析数学模型,逐一分析参数变化对转速观测的影响。
基于双电流闭环直流注入方法,提出了无速度传感器控制下的快速带速重投策略。首先,分析了短时电力中断情况下旋转电机特性,建立了单电流闭环直流注入下旋转电机数学模型,分析了测量反馈电流频率估算电机转速的方法;其次,提出了基于双电流闭环直流注入下对转速辨识的策略,建立了直流注入下电机数学分析模型,设计了电压模型磁链观测器获取转子磁链信息,通过三阶带通滤波器完成对直流偏置以及噪声信号的滤除,然后对较低幅值交流信号进行归一化处理,设计了软件锁相环提取旋转电机转速;最后,设计了基于三阶段的带速重投策略,通过直流注入获取初始转速,利用转矩修正减小转速观测误差并且建立转子磁链,将转速估算初值代入全阶转速观测器,平滑并且快速实现带速重投。
基于无速度传感器控制下低速制动区域不稳定的现象,设计了低速区域转速辨识性能提升策略。首先,分析了低速制动区域转速辨识不稳定的机理,确定了不稳定的边界,提出了改进后的转速自适应律,分析了关键参数的设计,通过误差传递函数的零极点分析对改进后的转速辨识稳定性进行验证;其次,设计了感应电机的定转子电阻辨识策略,提出了一种在带速重投直流注入阶段独立工作的定子电阻辨识策略,定子电阻辨识与转速辨识同时工作,在直流注入结束时获取定子电阻辨识值与初始电机转速;最后,设计了高频电流信号注入获取电机等效电阻的方法,提出了参数辨识配合逻辑,进而设计了转子电阻的辨识策略。
本文搭建了牵引系统及控制模型并进行了大量仿真,基于地铁牵引传动平台与Typhoon半实物仿真平台,完成了实验验证,充分证实了上述无速度传感器控制策略的可行性与有效性。