【摘 要】
:
研究目的:在缺血性脑卒中发生后,大脑中缺血侧的细胞快速释放大量谷氨酸到细胞间隙并产生堆积,多余的谷氨酸溢出细胞间隙后作用在间隙外的谷氨酸受体上,使缺血侧的神经元处于过度激活的状态,对神经元产生兴奋性毒性作用。谷氨酸在缺血性脑损伤中具有至关重要的作用,细胞间谷氨酸清除的唯一途径是通过细胞膜上的谷氨酸转运体将谷氨酸转运到细胞内,转运到细胞内的谷氨酸在谷氨酰胺转化酶的作用下转化成谷氨酰胺,再经谷氨酰胺转
论文部分内容阅读
研究目的:在缺血性脑卒中发生后,大脑中缺血侧的细胞快速释放大量谷氨酸到细胞间隙并产生堆积,多余的谷氨酸溢出细胞间隙后作用在间隙外的谷氨酸受体上,使缺血侧的神经元处于过度激活的状态,对神经元产生兴奋性毒性作用。谷氨酸在缺血性脑损伤中具有至关重要的作用,细胞间谷氨酸清除的唯一途径是通过细胞膜上的谷氨酸转运体将谷氨酸转运到细胞内,转运到细胞内的谷氨酸在谷氨酰胺转化酶的作用下转化成谷氨酰胺,再经谷氨酰胺转运体释放到细胞间隙被神经元吸收,从而达到细胞外谷氨酸清除和转化的目的。大脑中的谷氨酸转运体有五种表现形式,不同形式的转运体表达在不同的细胞中,其中表达在星形胶质细胞上的谷氨酸转运体GLT-1,承担了细胞间约90%的谷氨酸的转运任务。然而,细胞外堆积的谷氨酸在缺血过程中是如何被调控的目前仍不是很清楚。在缺血模型中,缺血部位的神经元快速释放大量的Shh,并激活SHH通路,而该通路的过度激活也会造成神经元的丢失,与组织损伤的发生有关。在我们之前的研究工作中发现,SHH通路可以通过快速调节细胞膜上的谷氨酸转运体的表达量实现对细胞外谷氨酸浓度的快速调节,抑制SHH通路可以有效降低细胞外谷氨酸的含量,并且在这一过程发挥作用的转运体是GLT-1。因此我们的研究目的是明确在脑缺血过程中SHH通路调节GLT-1清除细胞间谷氨酸的机制,进而通过抑制SHH通路实现对缺血后的脑损伤的保护作用。研究内容:明确SHH通路对GLT-1的调节作用;找到SHH通路对GLT-1调节过程中的关键作用分子;进一步验证SHH通路在缺血过程中的作用,抑制SHH通路实现对缺血后的脑损伤的保护作用。研究方法:1.通过体外电生理全细胞膜片钳记录原代培养的星形胶质细胞膜上谷氨酸转运体的电流的方法,明确SHH通路对谷氨酸转运体的调节作用。2.通过细胞转染的方法在转染了谷氨酸转运体GLT-1的HEK293细胞中,通过细胞膜片钳记录方法明确SHH通路调节谷氨酸转运体的分子机制。3.在星形胶质细胞中通过RNA干扰的方法,实现对星形胶质细胞中分子蛋白表达的敲低,明确参与SHH通路调节谷氨酸过程中的信号分子。4.在小鼠和食蟹猴中建立MCAO模型,验证抑制SHH通路活性对缺血脑损伤的保护作用。研究结果:1)SHH通路可以通过调节星形胶质细胞膜上GLT-1的表达量来快速调节细胞外谷氨酸的浓度。2)SHH通路能够通过PKCα磷酸化GLT-1的563位点使其快速从细胞膜上转运到胞浆内。3)抑制SHH通路可以有效的改善小鼠MCAO模型后脑缺血导致的梗死面积。4)NVP-LDE225通过抑制SHH通路可以有效改善非人类灵长类MCAO模型缺血后的脑损伤,并建立短期和长期的保护作用。研究结论:SHH通路可以通过调节细胞膜上GLT-1的数量快速调节细胞外谷氨酸的浓度,而SHH信号通过激活PKCα使GLT-1上的563(562)位点的丝氨酸发生磷酸化从而降低膜上GLT-1的表达。抑制SHH信号通路能够维持膜上GLT-1的表达量,实现对细胞外谷氨酸的快速转运,从而降低细胞外谷氨酸的浓度。抑制SHH信号通路的活性可以改善缺血性脑损伤,减少缺血导致的脑梗死面积,并且能够改善缺血后的神经功能。FDA批准临床用于基底细胞癌的药物,NVP-LDE225可以通过抑制SHH通路的活性,维持细胞膜上谷氨酸转运体GLT-1的表达量,有效改善小鼠和食蟹猴缺血模型后导致的脑损伤,并且可以建立长期有效的保护作用。以上结果提示,SHH通路是降低谷氨酸兴奋性毒性,治疗缺血性脑损伤的一个有效靶点。Sonic hedgehog(Shh)作为一种有丝分裂素和形态形成素,通过Smoothened(SMO)受体介导的SHH通路在细胞增殖分化和发育过程中发挥着重要作用。胆固醇作为内源性的甾醇结构,可以直接与SMO结合来激活SHH通路。然而,SMO的内源性抑制作用的研究目前并不十分清晰。因此,在我们的研究中发现皮质醇能够直接与SMO结合,来竞争性地抑制胆固醇对SHH通路的激活作用,而消除皮质醇对SMO的抑制后,会促进肺部细胞过度增殖并导致肺发育的不成熟。Shh和胆固醇均可激活经典和非经典通路,两条途径都能够被皮质醇抑制。皮质醇和胆固醇能够在SMO上产生竞争结合。当SMO中的L112变为A112时,皮质醇不再能与胆固醇竞争结合在SMO上。Smoa/a(L116A)的突变小鼠出生后由于呼吸衰竭很快死亡,主要原因是肺间质成纤维细胞增加和表面活性蛋白的分泌减少。这些结果表明,皮质醇是SMO的内源性抑制剂,其对SMO的抑制对小鼠肺发育至关重要。
其他文献
背景:水貂是一种肉食性小型哺乳动物。水貂的皮毛轻柔结实,毛绒丰厚,可以制成多种毛皮制品,广受消费者欢迎。近年来,我国水貂产业发展迅速。然而,在水貂产业持续向好发展的同时,水貂的疫病,尤其是病毒性传染病给水貂养殖业带来了很大困扰。水貂的顽固性腹泻是一种由水貂圆环病毒(Mink circovirus,MiCV)感染引起的一种季节性传染病。该病发生在每年秋冬交替季节,主要引起水貂的红白痢,并伴有厌食、被
目的:生物气溶胶包括细菌、病毒、真菌等生物颗粒,其粒径范围在0.01~100μm之间不等。这些生物气溶胶颗粒可通过空气传播,进入人类的呼吸系统从而导致各种疾病,对人体健康造成危害。高效率的生物气溶胶采集技术是捕获并监测这些颗粒中微生物的重要手段,从而保证生物气溶胶中的微生物活性,用以进一步的生物学分析。本研究针对原有气旋式生物气溶胶采样器存在的问题,对采样器的关键参数进行设计、优化并进行模拟与现场
造血干细胞是包括髓系细胞和淋系细胞在内的多种成熟血细胞的主要来源。小鼠胚胎发育过程中,造血干细胞主要起源于胚胎期第10.5天(embryonic day,E10.5)的主动脉-性腺-中肾区(aorta-gonad-mesonephros region,AGM)区,此时主动脉内皮经过内皮造血转化过程产生造血细胞。在该过程中,一小群特化的生血内皮细胞的形态逐渐由内皮细胞样的扁平转变为造血细胞样的圆形,
造血干细胞作为造血系统的基石,具有自我更新和多谱系造血分化的能力,在个体的生命周期中可以持续产生各种谱系的血细胞,并重建受到损伤的受体造血系统。然而在胚胎发育中,造血干细胞数量稀少,发育时间窗短,并且目前缺乏对其特异性的表面标志物的认识,这使得深入研究发育造血干细胞的特性变得十分困难。目前研究表明,小鼠的造血干细胞是由主动脉-性腺-中肾区(Aorta-gonad-mesonephros regio
帕金森病(Parkinson’s disease,PD)是一种由中脑黑质(substantia nigra,SN)多巴胺能神经元退行性死亡导致纹状体中多巴胺水平降低,进而影响基底节活性异常的运动障碍性疾病。目前临床上针对基底节活性进行治疗的方法主要为脑深部电刺激术(deep brain stimulation,DBS)。DBS治疗PD常用靶点为丘脑底核(subthalamic nucleus,ST
“肿瘤干细胞”理论的提出,为恶性肿瘤的复发和转移提供了新的理论基础,也为肿瘤治疗指出了新的方向和策略。肿瘤干细胞理论认为:恶性肿瘤组织中存在一小群自我更新能力很强的细胞,它们既具有肿瘤细胞的特性,又具有干细胞的特性,所以被称为肿瘤干细胞(Cancer Stem Cells,CSCs)。目前的观点认为,肿瘤干细胞对化疗药物具有很强的耐药性,是恶性肿瘤复发和转移的真正根源,所以靶向治疗肿瘤干细胞已经成
冠状病毒传播速速快、感染后果严重,对人类生命健康构成持续的威胁。到目前为止,总共出现三次冠状病毒的暴发流行,其一是2003年由严重急性呼吸综合征冠状病毒(SARS-CoV)引起的非典型肺炎,其二是2012年由中东呼吸综合征冠状病毒(MERS-CoV)引起的中东呼吸综合征,其三是2019年由新型冠状病毒(SARS-CoV-2)引起的新冠肺炎(COVID-19)。遗憾的是目前仅针对SARS-CoV-2
"捧着一颗心来,不带半根草去。"牢记陶行知先生的教诲,寒来暑往,时刻不易。种树者必培其根,种德者必养其心。自2006年接触了心理健康,感受到了心育的魅力,便想方设法,借用心育的方式与技巧,融入班级管理,融入少先队工作,融入教学工作。专注于心,改变自身错误观念,让心与心不停碰撞,提升内心强大力量,全面发展展示个性;用乎于情,让爱大声说出口,让爱挂在我脸上,用爱搭建大舞台,组建有爱大家庭。因为她深深明
为了有效应对核战争和涉核多样化军事任务,急需发展高性能γ能谱测量分析装备技术。受限于谱仪探测器、电子学等硬件固有性能,当前军民用γ谱仪尚不能完全胜任复杂辐射场中放射性核素定性识别和定量分析任务。近年来,国内外γ能谱测量分析技术不断向数字化、算法化方向发展,尤其是能谱反卷积方法的研究和应用,使得利用复杂方法、算法对实测谱做信息复原以提升谱仪综合性能成为可能。本文围绕复杂γ能谱分析这一难题,从信息系统
分子生物学的中心法则显示了遗传信息从DNA到RNA再到蛋白质的传递方向。人类基因组中包含约20 000~25 000个蛋白编码基因,这些基因的转录和翻译结果最终决定了不同细胞类型的结构和功能。细胞内时空特异性的基因表达是一个受到严格控制的过程,其调控因素主要包括表观遗传学编码与转录因子程序等。基因突变能够影响表达调控的过程,对突变的基因组定位分析显示,绝大部分与性状和疾病相关的突变落在基因组上非编