基于DIS的初中物理实验课程资源整合研究

来源 :青岛大学 | 被引量 : 0次 | 上传用户:snowmansoft
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着教育信息化的深入发展,初中物理实验教学的数字化成为重要趋势之一,与信息技术革命相伴而生的数字化实验已历半个多世纪的发展,在我国,数字化实验也已出现二十余年,但数字化实验至今也没有深入初中物理课堂。究其原因,一个重要的方面在于——数字化实验作为一种课程资源缺乏与其它课程资源的整合。论文主要从技术、活动、课程三个层面,就基于DIS的实验课程资源整合问题进行了探讨。引言部分介绍了本研究的背景、意义、目标和方法,界定了本研究的核心概念,陈述了本研究的理论基础。正文分为四部分:第一部分是对国内外数字化实验及教学研究情况的文献调查,通过文献计量和内容分析,从纵向上了解了数字化实验及其教学研究的历史脉络与前沿动态;从横向上把握各类新兴数字化实验模式的特征及其教学应用的问题。第二部分是对初中物理实验课程资源应用情况的问卷调查,分本地和全国两组样本,对一线初中物理教师的实验课程资源开发、应用、整合情况做了问卷;比照两组样本,分析了当前初中物理课程资源,特别是数字化实验资源应用的现状与问题。第三部分是对各类初中物理实验课程资源的比较研究,尝试建立了各类数字化实验模式的比较指标体系,对六种数字化实验模式进行了定量比较;从学科核心素养的视角对三类实验课程资源的教学价值进行了定性比较。第四部分是整合实验课程资源的行动研究,探索了基于技术的数字化实验资源整合,基于活动的三类实验课程资源整合,基于项目化课程的实验资源整合三条路径,并根据具体的行动实践案例提出了相应的整合策略。论文在最后对本研究的结论做了总结,对研究过程做了反思,并对课题研究的前景做了展望。
其他文献
白光LED有着节能、环保的优点并且已经广泛应用于照明和显示等领域。商用白光LED多采用蓝光芯片和YAG:Ce黄色荧光粉复合而成,但该技术方案制作的白光LED存在显色指数不高、色温偏高等问题。随着人们对高质量照明需求的发展,开发能被紫外激发、有较高效率和稳定性的新型荧光粉材料已成迫切需要。本论文中,通过往Gd VO4基质中引入一定量PO43-,实现了VO43-发光强度的调谐,不同强度的VO43-蓝光
有机非线性光学晶体拥有大的二阶非线性系数,高的电光系数以及较低的介电常数。在THz领域中,基于有机非线性光学晶体的THz辐射源具有相位匹配条件简单、带宽大和易于实现等优势受到广泛关注。对有机分子D-π-A吡啶阳离子结构进行再设计,寻找出合适的给体部分与阴离子相组合,设计出新型衍生物,能够进一步获得性能优异的晶体材料。羟基是经典的阳离子电子给体,促进了SHG活性分子的排列,增大微观非线性。本文将羟基
磁性材料因具有特殊性质而在当今社会的发展中起着至关重要的作用。目前,先进的永磁和软磁材料、磁阻抗材料等磁性功能材料在科学研究和社会生产中的应用愈加广泛。其中,磁性半导体因为同时具有磁性和半导体性质而成为自旋电子学新一代的器件应用材料,可以更加便捷高效地处理、传输和储存信息。Eu基化合物因其多样的组成与结构而表现了丰富的磁性机制,在已知的磁性材料中Eu基化合物占据了很大一部分。本文对三种Eu基磁性化
微弱信号检测是测量技术领域中的研究热点,是利用电子学和信号处理技术从复杂噪声背景中分离出有用信号的一门技术学科,已广泛应用到航空航天、遥感、医疗等领域。本文针对超低温下超导材料的评价,设计了一个基于USB3.0的微弱信号检测系统,实现微弱信号检测与采集,检测系统包括模拟锁相放大器模块和高速数据采集模块。模拟锁相放大器采用低噪声放大技术、滤波技术、移相技术、相敏检波技术对信号通道、参考通道和相关器进
目前,平板显示朝着高分辨率、广视角、快速响应以及柔性的趋势发展。在当前的平板显示技术中,有机发光二极管(Organic Light Emitting Diode,OLED)是下一代平板显示技术的主要代表。薄膜晶体管(Thin Film Transistor,TFT)在OLED像素电路中同时担任开关和驱动器件,其性能对平板显示的变革有重要意义,因此高性能TFT器件的研究备受关注。传统的硅基TFT由于
日新月异的科学技术极大地推动了光电相关材料的发展。光电探测器由于可以检测特定波段的电磁波,目前已经广泛应用于国防军事、航空航天、环境检测、生物医学、光学通信以及化学分析等领域。作为高性能光电探测器的沟道材料,一维金属氧化物纳米结构由于具有出色的电学性能,较低的成本以及优异的环境稳定性,被认为是最有前景的候选材料之一。其中,相比In2O3、Zn O纳米纤维,SnO2纳米纤维由于载流子浓度较高、光敏性
锂离子电池因其高能量密度、长循环寿命以及对环境无污染等优点,已经被广泛应用于各个领域。而随着人类社会的高速发展,人们对能源供应需求提出了更高的要求和挑战。为了迎接这一挑战,锂离子电池新型负极材料的研发就显得格外重要。其中,3d过渡族金属基等新型负极材料因地壳资源丰富,高比容量以及高工作电压等优点备受研究者们的青睐。然而目前在锂离子电池中,对电极材料本身以及界面上的物理化学过程的基本原理探讨则进展有
现代技术对于高密度、稳定、低能耗纳米级存储元件的需求日益增长,以及在自旋电子学和储能领域进行的大量基础研究,基于磁场和电场的耦合引发了一股研究热潮。磁电耦合是系统对外加电场的磁响应,或等效于外加磁场引起的电极化,其在磁电调控和揭示储能反应机制上有极重要的运用价值。基于电化学原理与技术,我们可以实现材料磁性功能的有效调控,从而设计发展新型的磁离子器件;同时,通过磁学理论与测试技术可以研究储能材料中的
近些年,对于半导体气体传感器的研究受到普遍关注。但其中大部分研究对象为n型半导体,而对p型半导体气敏材料的研究相对较少,且普遍存在灵敏度较低、选择性和重复性较差等问题。针对上述情况,本论文以开发高性能p型半导体气体传感器为目标,采用多种简单易行的手段合成了三种具有独特形貌和良好气敏性能的p型半导体材料,并利用多种方法对其气敏性能进行进一步的改善和优化,同时研究了相应的气敏机理。主要成果包括:(1)
随着探测技术的产生和发展,太赫兹波以其优越的特性越来越受到人们的关注,在通信、安检、成像等领域有着广阔的市场应用前景,然而基于太赫兹频率段的功能元件发展缓慢。本文分别提出了在太赫兹下基于金属反射超表面结构和石墨烯-金属混合超表面结构的偏振转换器,并研究了所设计结构的偏振转换特性以及主要原理。主要的工作可概括如下:1、本论文设计了一个超宽频及高效率的线-圆(LTC)反射式偏振转换器,它是以太赫兹频率