论文部分内容阅读
生物质能源是目前能转化为液体燃料代替化石燃料的可再生清洁能源,其转化利用技术对缓解能源短缺和改善生态环境具有重大意义。生物质热解技术是常用的生物质热加工处理技术,由于该技术设备制造成本高、反应条件苛刻以及生物油的成分复杂、性质不稳定,阻碍了其工业化和广泛应用;而利用石油加工完善成熟的工艺来实现生物质的转化,可以很大程度上降低生物质能转化利用的生产成本,提高生物质的利用效率和发展的速度。本文依托本课题组相关的科研项目,进行了延迟焦化工艺处理生物质的实验研究,并对该工艺下生物质热解机理进行了探讨。论文首先对木屑为生物质原料的性质分析及组成分析,包括颗粒粒径、含水率、堆积密度等,并对生物质进行了热重分析,初步掌握了生物质裂解的温度区间。研究了单纯生物质延迟焦化工艺下,反应产物随原料粒径、反应温度、反应时间、升温速率的变化规律,对生物质延迟焦化反应条件进行了优化,木屑粒径20-40目,反应终温460℃,反应时间1h,液相产率为45.6%,气体产率22.45%,固体产率31.95%;生物质转化率达68.05%。然后利用GC-MS对液体产物进行了分析,结果显示,生物油中含有醇、酚、醛、酸等大量含氧化合物,与快速裂解工艺相比,本实验方法所得生物油基本不含有分子量较大的左旋葡聚糖。由于生物质是固体粉末,为了能利用现有的炼油装置来加工生物质,必须考虑进料的问题,因此在后续研究中,将木屑和减压渣油(VR)混合制成悬浊液来实现连续进料。首先通过木屑-VR的粘温曲线和浆料流变曲线分析,确定了木屑-VR共焦化的合适添加比例为木屑/VR=1:10,然后对影响木屑-VR共焦化的因素进行了考察,确定了最优的反应温度为460℃,反应时间为2h,为工业化提供了参考条件。针对生物质的三种主要成分纤维素、半纤维素和木质素,利用红外分析和用GC-MS分析等手段进行表征分析,对生物质热解机理进行了初步的探讨。