论文部分内容阅读
酯作为一种重要的化工类原料在食品、香料、添加剂、药物合成等行业的需求处在高速增长,其绿色高效合成也广受关注。长链酯的合成一般以浓硫酸为酸催化剂,在反应蒸馏过程中通过Fisher酯化反应合成,一方面会因为浓硫酸的强氧化性和脱水性特点,在制备过程中常发生醚化、碳化等副反应产生多种副产物,导致产品酯纯度低、着色严重;另一方面由于浓硫酸在酯相中的溶解和其强腐蚀性,导致催化剂回收困难,产品酯的后续处理复杂并会产生酸性废液,成为生产过程的潜在安全隐患,增加对环境的危害。离子液体作为一类新型绿色溶剂,既可用作催化剂,又可用作萃取溶剂;而反应萃取作为典型的过程强化方法在提高反应转化率的同时,强化目标产物的进一步分离与提纯。因此基于离子液体合成长链酯的反应萃取过程强化研究具有重要意义。为了快速获得兼具酸催化功能和萃取功能的离子液体,解决酯化反应中依赖经验大量实验探究合成新型离子液体催化剂存在的盲目性和费时费力低效的问题,提出了基于综合考虑COSMO-RS热力学指标、特定功能性、物性预测和可获得性指标用于酯化反应体系的离子液体筛选方法。以己酸和丁醇、异丁酸和异丁醇的酯化反应体系为例,在热力学指标中设定综合性分离指标Smix为筛选目标,以离子液体对酸醇酯水的溶解能力、离子液体在酯相中的溶解损失为限制条件;而在离子液体特定功能性指标中设定对离子液体酸性功能基团、绿色可持续性、副反应的考虑;离子液体物性预测时设定对熔点、黏度限制;以及最后对离子液体的实际可获得性的考虑。经过这一系列步骤,能够将综合性分离指标Smix好但是可能与酯化反应体系组分反生副反应、物性欠佳、以及实际相对难以获取的离子液体进行排除,从而筛选出分离性能好、具有酸性催化、且可实际获取的离子液体,验证了筛选方法的可行性。对筛选出来的离子液体[BMIm][HSO4]进行实验验证,分别通过热力学液液相平衡和动力学实验来对离子液体的萃取作用、酸催化作用进行考察。在己酸和丁醇的酯化反应实例中,液液相平衡实验证明[BMIm][HSO4]在反应体系中起到了萃取剂作用,不同离子液体用量下的对比酯化反应则证明了[BMIm][HSO4]具有催化剂功能。基于这两种功能的考虑,优化了己酸丁酯合成的反应萃取条件,然后探讨了离子液体强化己酸丁酯合成的反应萃取机理。[BMIm][HSO4]用于异丁酸和异丁醇酯化反应体系的实例中,其双功能特征得到了实验验证,包括三元液液相平衡中离子液体与异丁酸异丁酯的分相,对异丁酸、异丁醇的萃取作用,以及对反应的催化作用。同时还对异丁酸异丁醇酯化反应体系的液液相平衡数据进行拟合,获得了该反应体系的NRTL模型参数,为其后续的热力学分析奠定了基础。从酯化反应受化学平衡限制的特点,以及离子液体具有潜在酸催化性能和萃取性能的特点,对以离子液体强化长链酯的反应萃取合成过程进行了概念设计。在此概念设计的基础上,结合对[BMIm][HSO4]用于异丁酸异丁酯合成的酯化体系的热力学分析和动力学研究,对该体系的反应萃取流程进行了设计与模拟。[BMIm][HSO4]催化异丁酸异丁醇酯化反应体系的热力学相平衡计算和分析表明,在多数情况下反应前的体系{[BMIm][HSO4]+异丁酸+异丁醇}是均相体系,而反应发生后[BMIm][HSO4]的亲水性和疏酯性可以起到将水和酯隔离的作用从而以分相的形式将酯移出反应体系,实现移动化学平衡来强化反应过程。考虑到离子液体的溶剂效应和催化活性,采用基于活度的拟均相反应动力学模型对异丁酸异丁酯的反应动力学数据进行了拟合。而基于NRTL模型和拟均相反应动力学模型的反应萃取流程模拟表明,该流程实现了从整体上使异丁酸、异丁醇按照化学计量系数比1:1来反应,具有较高的全程转化率(异丁酸转化率为99.3%),可以得到高纯度的主产物异丁酸异丁酯(质量分数为99.03%),同时也将副产物水移出了系统。最后研究了离子液体[BMIm][HSO4]在异丁酸异丁醇酯化反应体系的腐蚀性,失重法得到的纯离子体系以及酯化反应体系中的腐蚀动力学表明,304和316L两种不锈钢金属材料在这两组体系中有良好的耐腐蚀性,腐蚀速率均在可接受范围。腐蚀前后的不锈钢金属试样的表面微观形貌表明316L不锈钢具有更好的耐腐性,在较长时间(18天)的酯化反应体系中,316L不锈钢金属试样仍能维持较为完整的表面形貌,对于酯化反应体系而言是很好的耐腐材料。