ZnO基纳米多枝结构制备及物性研究

来源 :长春理工大学 | 被引量 : 0次 | 上传用户:winston69
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
ZnO作为第三代宽禁带半导体材料已经得到广泛研究。通过制备不同形貌 ZnO纳米材料、ZnO基复合材料可以充分利用纳米材料的优点,从而改善 ZnO材料的性能。本论文主要工作内容如下:  (1)采用溶剂热法,通过调节水和乙醇混合液的比例制备了多种形貌的ZnO微米结构。从我们的实验上可以得出结论:ZnO的光学性质与其展现的形貌息息相关,形貌差异能够引起 ZnO局部的结晶质量不同,界面上的缺陷情况,材料表面的电荷分布等差异,以上因素的协同作用最终影响了材料的光学性质。  (2)通过简单无催化的低温水浴方法合成多枝ZnO纳米/微米结构,这种由梭形纳米/微米棒主干组成的纳米/微米结构周围围绕着六个径向导向的分支。本文分析了其光学性质并详尽地探讨了可能的生长机理。  (3)利用操作简单的电化学沉积法制备海胆状ZnO/In2O3纳米复合结构。退火后复合材料结晶性改善的同时,紫外发光增强,并在443nm观测到与ZnO/In2O3纳米复合结构界面有关的发光峰。  (4)采取了三步的方法制备异质Si/ZnO纳米多枝结构。通过实验条件的改变选择最优方案并研究了实验产物的光学性质。
其他文献
任何构造超对称模型的尝试都不能回避两个基本的问题:一个是超对称是如何破缺的,另一个是超对称破缺的效应是如何传递到最小超对称的标准模型中。动力学的超对称破缺为我们解
近年来,随着激光技术的不断发展,强激光与物质相互作用物理及其相关应用成为人们日益关注的研究热点。人们发现,超强超短激光与固体薄膜靶相互作用能够使离子得到加速,产生的
与传统的固体激光器相比,光纤激光器具有结构紧凑、泵浦阈值低、无需外加制冷装置等优势,这使得光纤激光器在光通信、光传感、激光加工、激光医疗、激光印刷等领域发挥着越来越
拉曼散射光谱可以反映分子的振动信息,通过分析光谱的振动峰,可以对不同分子或同分异构体分子进行识别。表面增强拉曼散射(SERS)效应是1974年首次发现的,它可以极大地增强拉曼散
本论文研究复杂网络的拓扑结构及相应的动力学性质。论文在前人的基础上,提出了一种新的网络演化模型,并以相同度数的随机点阵上的生命游戏以及随机共振与复杂网络的某些联系为
超冷原子的运动速度极慢,可看成是静止的,相应温度可低于1mK。超冷原子系综表现出许多新的物理特性,遵循新的物理规律。目前,超冷原子被广泛应用到多个领域。例如,光频原子钟
尽管粒子物理标准模型取得了巨大的成就,但作为一种有效的理论,它并不能解释或解决暗物质、暗能量、强作用和弱电作用统一等问题,人们努力寻找超出标准模型的新物理的迹象。本文
对介观纳米系统的量子输运性质研究有重要的器件应用价值。同时,由于在输运过程中可能存在的电子多体关联和量子相干效应,这类研究也有丰富的物理内涵。本文力图发展若干有用的
传统的光波导及其器件的横向尺寸由于受到衍射极限的影响,被限制在波长量级。现代信息技术对于光子学器件的微型化和集成化有着更高的要求,要求器件的尺寸和空间距离均要突破光
在光与原子作用研究中,原子相干效应一直是人们持续关注的热点。电磁诱导透明(EIT)是一种重要的原子相干效应,发展至今获得了非常成熟的研究,已经成为实验上一种重要的技术手