论文部分内容阅读
TiAl合金在航空航天领域的广泛应用,使其在基础研究和工程应用方面都备受关注。但是TiAl合金在工业中的广泛应用却因为其脆性问题而发展迟缓。工业上一般考虑从微观结构控制和合金化两方面来改善其力学性能。TiAl和Ti3Al组成的双相组织具有比较优良的综合性能,于是引发了研究热点。目前关于TiAl←→Ti3Al形变诱发相变过程中成分的不连续性还存在争议,界面的动力学行为尚不清楚,实验中对Nb在TiAl合金中的力学性质的影响方面的研究也存在矛盾性的报道。针对这些问题,本文作者在工作中,利用第一原理和分子动力学的方法在材料学研究方面的特点,对Ti—Al合金中常温下切变诱发结构变化的动力学和静力学过程,以及基体成分和合合成分Nb在其中的作用和影响进行了系统的探讨。
首先研究了TiAl和Ti3Al相常温下应力诱发常见位错的形核和长大能力,并从电子结构探讨力学性质的变化。发现在TiAl中,1/2[110]形核能最高但层错能低;1/2[011]位错的形核能次之,但层错能较高,不稳定:1/6[112]位错最容易形核,常温变形比较容易诱发。而DO19-Ti3Al中1/3[1010]位错在基面(0001)上的滑移其形核能垒比L10-TiAl中1/6[112]位错的低一些。主要原因是TiAl中的p—d共价键的强方向性导致了其较高的剪切阻力。L10-TiAl相切变后其共价键的方向性比切变前有所下降,相应的脆性问题有所改善;而在DO19-Ti3Al中,切变后的Ti—Al之间的p—p,p—d作用均有所加强,相应的抗剪切变形能力增强。因此,一定程度上导致了双相组织较为优异的综合性能。
其次,在之前的研究基础上,本文作者考察了分别具有L10-TiAl和DO19-Ti3Al两种结构(fct和hcp)以及不同成分(Ti:Al=1~3)构型的切变诱发相变能力和基体成分的关系。发现在Ti:Al~1.5附近,fct和hcp结构的成分相形成能相近;存在一个公共成分软化区(Ti:Al=1.25~2),在该区域内,fcc和hcp结构中双向相变FCT←→HCP容易进行,而出了此区域,在hcp结构相中更易诱发结构转变。Ti3Al相是室温应力诱发变形过程中常出现的过渡相。结合实验和计算中的成分分析,本文作者提出了一个合理的室温应力诱发相变机制,强调了异常成分和应力集中在其中的驱
继探讨了基体成分变化的影响之后,本文作者进一步研究了在外力作用下,L10-TiAl系统中位错以及界面结构演变的动力学和静力学过程。发现应力诱发结构变化的动力学过程如下:首先位错初始滑移被诱发→形成第一个SISF→每隔一层(111)面滑移有诱发→形成HCP相→HCP相部分地转化为孪晶TWIN。而且,较小的初始切变速度场只能生成SISF和TWIN,而较大的初始速度场则可能促生HCP结构。其中HCP结构作为亚稳态出现,以及孪晶的大量生成与实验观察一致。进一步我们用第一原理精确计算了上述各个层错结构转变中的能量变化的静力学过程。发现SISF→TWIN的转变形核能垒明显小于SISF→HCP过程的能垒,从而解释了速度场对变形诱发结构的影响;生成的HCP相是亚稳的,在其形核驱动力衰减过程中还会部分的转变为孪晶TWIN,由此解释了实验和前面动力学过程计算中观察到的现象:另外,两种转变方式生成的孪晶从能量上看都是非常稳定的,实验观察也表明,孪晶形变为室温下的主要形变模式之一。
合金化在解决TiAl合金的脆性问题上意义重大。本文作者研究了不同含量的Nb对TiAl力学性质的影响。发现随着Nb含量的增加,四方度c/a增加,但与塑性的增加并没有直接的关系,各个成分构型的剪切应变诱发的位错形核能垒表现出台阶式的变化趋势;Ti11Al12Nb,Ti10Al12Nb2,Ti9Al12Nb3构型的剪切变形能量曲线非常接近,在此成分范围内,Nb对基体起到了弱强化效应;而Ti13Al1nNb5,Ti8Al12Nb4,Ti7Al12Nb5的剪切变形能量则非常相近,在此成分范围内,Nb对基体起到了较为明显的强化效应。电子结构的分析表明,当相邻NbTi处于次近邻或者更远位置时,Nb对基体的强化作用主要来源于(111)面内的强方向性共价键;而当相邻NbTi的位置出现近邻情况,则Nb对基体的强化作用同时来源于(111)面内和(111)面之间的增强的方向性共价键作用。大成分范围的Nb合金化研究使得我们对实验中的矛盾结论有一个比较统一、全面和客观的理解。
通过上述研究,充实和深化了本文作者对基体成分、应力的变化以及合金化在钛铝相室温形变过程中的驱动力作用和相变机理的认识。而且,微观结构动力学过程和Nb合金化的研究克服了实验无法观察变形细节,无法大范围的考察合金化影响的限制。其结果一方面为实验提供理论依据,另一方面对今后的实验研究起到了预测指导作用。