论文部分内容阅读
外科手术是临床治疗的重要手段。随着科技的发展及生活水平的提升,从开放手术到微创手术,操作方式往精准化发展,要求医生手术技能的专业化程度越来越高。手术作为一种性命攸关的治疗手段,其临床技能通常需要外科医生长时间的训练与积累。长期以来,医生缺乏足够的训练方式和机会,这与社会对成熟外科医生的巨大需求形成矛盾。伴随虚拟现实技术及计算机硬件的快速发展,虚拟手术系统应运而生。通过对体内环境的三维建模与可视化,结合拟真人机交互方式,虚拟手术系统能够实现真实手术全流程演示与交互操作,提供针对性的重复训练,成为基础技能学习与临床练习之间的过渡环节,极大提升培训效率。实时形变模拟是虚拟手术系统开发中最为关键的模块,它涉及体内环境真实感渲染,包括器官组织的形变、创伤、流血及缝合等的器械器官交互操作,使得虚拟手术系统更接近临床表现。实时形变模拟满足可用性需要解决三个关键问题:一、准确性,可变形体的形变特征具有物理依据,在三维视觉上可信;二、实时性,形变计算能在极短时间内完成,满足不同应用环境的要求;三、鲁棒性,模型具有数值稳定性,在长时间操作及拓扑结构改变下模型不会崩溃,不丧失计算精度。更近一步,实时形变模拟达到实用性需要解决两个关键问题:一、多样性,包括器械、器官及体液等不同动态物体都能模拟计算;二、易用性,整合三维渲染模型及实时碰撞检测算法,方便地应用于特定手术模块开发。着眼于以上两方面,开展本文研究工作。首先,生物软组织是虚拟手术系统中最关注的可变形体,占据着医师的大部分手术操作和视野。相较于简单柔性体,生物软组织作为有机高聚物,其呈现出非线性、粘弹性及不可压缩性的力学特征。为更好地模拟生物软组织,本文提出了一种生物软组织实时形变模拟方法SpringPBD,将非线性-粘弹簧引入基于位置动力学中,结合体积不变约束,实现模拟生物软组织的典型力学特征。以肝脏器官离线有限元计算结果为标准,SpringPBD算法的全局误差比现行主流实时形变模拟算法更低。此算法具有较高的实时性和准确性。其次,以不可伸长弹性杆为物理模型的手术缝合线、介入手术导丝和纤维内镜等医疗器械在手术中应用广泛,而不可伸长手术缝合线由于穿刺、缠绕和打结等行为呈现出更加复杂的交互效果。因此本文以不可伸长手术缝合线为研究目标,采用离散Cosserat弹性杆模型,结合直接距离约束求解,实现模拟手术缝合线在发生弯曲、扭转等大变形时保持长度几乎不变,长度变化率低于3.2%。同时借助连续碰撞检测与响应,呈现了大时间步长模拟下的稳定打结、缠绕和生物软组织缝合效果。再次,一个完整的虚拟手术场景,包含生物软组织、手术器械及血液等多种动态物体,涉及到大量的碰撞解算和形变计算。考虑到三维渲染的技术特点,本文采用计算着色器实现了GPU并行加速的统一粒子框架CSDynamic,利用基于位置动力学模拟系统中的各类动态物体。通过对物理计算中最耗时的碰撞检测和约束投影进行并行改造,在大量基元的模拟场景中碰撞检测加速比最高达15,约束投影加速比最高达17。CSDynamic构建的夹持训练场景,物理计算每帧平均耗时仅7.19毫秒。该框架满足实用性的要求,且具有跨平台的技术特点。最后,在应用环节,本文提出了一个基于中国数字人的虚拟手术系统快速开发流程,涵盖人体器官和手术器械建模方法,以及手术场景的实时真实感渲染。借助中国参考人技术,该流程可套用至不同年龄阶段及体型的中国人群。本文应用该流程构建了腹腔镜胆囊切除虚拟手术系统,该系统由自研五自由度机械手及图形渲染设备组成,具有基础技能及完整手术流程的训练功能。综上所述,本文提出了针对于生物软组织和不可伸长手术缝合线的两种实时形变模拟方法,一套GPU加速的应用框架和一个虚拟手术系统快速开发流程。本文的研究意义在于走通了面向虚拟手术系统开发实时形变模拟方法的全流程,该流程能够高效地满足不同手术类型下模拟仿真的需求,为可靠的手术技能培训提供技术支撑。本文所述方法不仅能够应用于虚拟手术系统,在互动游戏、电影动画及教育培训等领域具有广阔的应用前景。