【摘 要】
:
燃料电池混合动力汽车(Fuel Cell Hybrid Electric Vehicle,FCHEV)凭借其零排放、高效率、低噪声等优点被认为是未来交通领域最具有研究前景的新能源车型之一。然而,燃料电池存在着动态响应慢、功率密度低等缺点,单独使用其作为能量源将无法满足车辆的负载需求。在配备有锂电池以及超级电容的燃料电池混合动力汽车当中,超级电容和锂电池共同作为辅助能量源,为车辆提供加速和起动时所需
【基金项目】
:
国家自然科学基金(61473115);
论文部分内容阅读
燃料电池混合动力汽车(Fuel Cell Hybrid Electric Vehicle,FCHEV)凭借其零排放、高效率、低噪声等优点被认为是未来交通领域最具有研究前景的新能源车型之一。然而,燃料电池存在着动态响应慢、功率密度低等缺点,单独使用其作为能量源将无法满足车辆的负载需求。在配备有锂电池以及超级电容的燃料电池混合动力汽车当中,超级电容和锂电池共同作为辅助能量源,为车辆提供加速和起动时所需的负载功率,也能回收制动能量,可有效解决上述问题,实现各能量源之间的优势互补。本文以该FCHEV为研究对象,以提高燃料经济性、延长能量源使用寿命、提升整车动力性为优化目标,开展对基于深度强化学习能量管理策略的研究,主要工作如下:首先,依据超级电容高功率密度特性,设计功率分层结构,上层能量管理策略采用基于模糊控制的自适应滤波器,分离车辆急加/减速时的峰值功率。下层设计基于深度Q学习与等效消耗最小思想的能量管理框架,采用数据驱动的方式进行离线训练,以减少等效氢耗为目标,优化燃料电池与锂电池的功率分配。引入优先经验回放机制,提升能量管理策略的离线训练效率。其次,兼顾燃料电池峰值功率和深度Q学习算法的训练效率问题,设计基于动作剪切的深度Q学习算法,探索峰值功率对燃料电池寿命的影响机理,分析影响深度Q学习能量管理策略学习效率的因素。提出动作剪切算法,通过优化动作空间大小,从而避免不合理动作被探索。在策略训练过程引入需求功率的转移概率矩阵和奖惩函数的归一化机制,提升能量管理策略的离线训练效率与性能。然后,针对深度Q学习固有存在的过估计问题,提出基于能量源退化的双深度Q学习能量管理策略,通过使用不同的网络来进行动作选择和动作评估,避免对策略值的过估计,提升能量管理策略的性能。综合燃料电池、锂电池性能退化成本与燃料经济性,构建基于多目标问题的奖惩函数,有效延长燃料电池与锂电池的寿命。采用基于排序机制的优先经验回放与软更新的技术,对离线训练效率进行提升。最后,在MATLAB/Simulink以及ADVISOR联合的仿真环境下对所提出能量管理进行仿真及分析,结果表明,所提出的策略有效提高了FCHEV的整车性能。其中,所提出的基于动作剪切的深度Q学习能量管理策略在燃料经济性上与基于Q学习的策略相比提高了14.8%,在典型工况下的燃料经济性达到了基于动态规划策略的89.7%。在WLTP工况下,所提出考虑能量源性能退化的双深度Q学习能量管理策略与未考虑能量源性能退化的策略相比,燃料电池性能退化速率有效降低了36.4%,,锂电池的退化速率减缓了1.95%。
其他文献
随着互联网的快速发展,网络中的用户量和信息量激增,信息过载成为互联网用户面临的重要问题。推荐系统能够分析用户在网络中的历史行为,进行用户建模,以实现个性化的推荐。作为解决信息过载的重要工具,推荐系统已广泛应用于电子商务、个性化广告推送、多媒体内容推荐等众多场景。在个性化推荐的帮助下,用户可以方便快捷地获得感兴趣的信息和产品。根据用户历史记录和辅助信息等信息对用户建模,挖掘用户的偏好,对用户进行推荐
视频目标跟踪作为新兴技术被广泛应用于智能视频监控、自动驾驶和精确制导等民用和军用领域中,是一个重要且极具挑战性的研究热点。随着深度学习技术的崛起,孪生网络目标跟踪算法在视频目标跟踪领域中崭露头角。然而这种基于模板匹配的跟踪方法性能会受到模板质量的制约,在外观变化、相似目标干扰和遮挡等复杂情况下典型孪生网络结构不足以满足对整个视频序列的持续稳定跟踪,所以如何在这些复杂情况下稳定完成跟踪任务成为了孪生
近几年,计算机视觉在人工智能领域迅速发展,如何实现计算机更好的理解人类情感,进一步改变人与计算机的关系受到越来越多研究者的关注。表情识别是一个横跨人工智能、神经学、计算机科学等领域的交叉学科,在计算机视觉、临床医学、虚拟现实以及车辆等领域有很大的应用价值,极大的推动了科学的发展和社会的进步,其广泛地应用在社会生活中,具体应用实际场景有人机交互、在线教育、医疗服务等。在人脸表情识别的流程中人脸检测是
随着移动互联网的蓬勃发展,繁杂的信息以各种形式出现在了人们的生活当中。文字作为信息的主要载体之一,在生活中承担着信息传播桥梁的作用。如今,面对海量的数据,依靠计算机对文本进行处理就成为了极佳的,也是必要的选择。文本分类(Text Classification)作为自然语言处理(Natural Language Processing,NLP)领域最基础的任务之一,作用巨大,影响深远。从初期基于情感词
随着我国铜合金消费量和生产量的不断增长,国内企业生产的普通产品产量过剩,不满足当前市场的需求,其产品生产效率、研发以及生产工艺等方面都与国外企业有了较大的差距。将基于大量数据的数据库技术与数据挖掘方法相结合是对工业大数据合理使用的新思路,根据目前实际存在的问题,本文以不同牌号的铜合金数据为研究对象,开发了由实际生产参数驱动的集数据存储与分析一体化的系统,包括数据录入、检索以及性能预测等功能模块,并
中医学是中国传统文化的宝贵传承,拥有一套完整的诊断理论体系,为人类的健康生存发展付出了难以估量的贡献。中医独特的诊疗模式为现代医学提供了很多具有参考价值的诊断依据,受到世界各国人民的欢迎,引起了医学研究者们的广泛关注。但是,传统中医独特的诊疗方法也给中医学的传播带来了困难,中医诊断方式难以客观量化表述,诊断过程也跟中医生的主观经验密切相关,中医各种语言以及辨证辨病原理靠经验传承,缺少既定标准。鉴于
肺癌作为我国第一大癌症有着极高的病死率,症状显现晚不易被发现的特点导致诊断出时往往已经到了肺癌晚期,5年生存率更是仅有16.1%。因此,肺癌的早期发现与诊断就显得尤为必要,临床诊断中通过对患者肺部进行CT图像扫描,对扫描CT图像进行诊断从而确定肺结节的状态,为研判病情、辅助治疗提供不可替代的帮助。近代医学科技的高速发展,CT图像成像更加精准,逐步成为肺病治疗的常规检查手段,导致肺部CT图像呈指数型
随着近些年人工智能、机器学习和深度学习技术从兴起逐渐趋于成熟,以微芯片为载体的类脑神经网络技术也受益于集成电路新工艺和设计技术的发展,在硬件结构及其相应的加速算法上不断涌现崭新的技术,从而引领着人类社会向更为智能化的未来科技时代突飞猛进。基于电子硬件实现的基本神经元及其构建的大规模人工神经网络模型可追溯到上世纪60年代,近些年由于大数据分析、智能感知、动态图像和音频识别等技术的推动,用高性能的神经
随着人工智能技术的快速发展,自动驾驶汽车已成为全球汽车产业发展的战略方向。目标检测作为自动驾驶感知系统的重要组成部分,其检测结果直接影响后续决策行为,进而影响自动驾驶的安全性能。传统目标检测算法的特征泛化能力较差,算法结构设计复杂,难以达到自动驾驶对检测精度和速度的要求。基于深度学习的目标检测算法可有效改善上述不足,满足自动驾驶感知需求。本文针对自动驾驶感知需求,对基于深度学习的二阶段目标检测算法
在近十年中,人们对人机交互以及情感计算需求的提升使面部情绪识别也成为研究和发展的主要方向,人们对人工智能领域的更高追求使得基于深度学习的面部情绪识别网络需要嵌入智能设备中以应用于现实生活的场景当中,然而传统的人脸表情识别研究中存在模型训练难、应用落地难以及小样本学习困难等关键技术问题和挑战,并且现有的人脸表情数据集在一些负面情绪上的样本数量较少,存在面部情绪样本不平衡的问题,本文针对上述问题进行了