论文部分内容阅读
随着控制和计算机技术的飞速发展,人们对滤波器精度要求越来越高。由于非线性滤波算法能够获得较高的滤波精度,且在信号处理、自动控制、计算机视觉、无线通信、航空航天、以及目标跟踪和识别等领域具有越来越广泛的应用,得到了相关领域专家学者的广泛关注和研究。扩展卡尔曼滤波(Extended Kalman Filtering,EKF)算法由于算法简单,易于实现得到了广泛的应用,然而,需要计算非线性函数Jacobin矩阵,在强非线性和非高斯环境下滤波表现较差,甚至会出现滤波发散,限制了EKF在工程实践中的应用。无迹卡尔曼滤波(Unscented Kalman Filtering,UKF)和中心差分卡尔曼滤波(Central Difference Kalman Filtering,CDKF)虽然不需要计算Jacobin矩阵,但只有选择合适的参数才能保证其收敛性。粒子滤波(Particle Filtering,PF)随着采样粒子数的不断增加,计算量增大,实时性较差。容积卡尔曼滤波(Cubature Kalman Filtering,CKF)是近年来新兴起的一种性能优越的非线性滤波算法,其数学理论严谨,参数选取方便,收敛效果好。克服了其它非线性滤波算法存在的一些问题,正逐渐成为当前及未来非线性滤波技术的研究热点和发展方向。本文围绕CKF算法改进优化展开研究,主要工作如下:针对交互式多模型算法中以牺牲滤波精度为代价来实现模型匹配问题,提出了一种基于量测虚拟采样提升策略的交互式多模型容积卡尔曼滤波(IMM-CKF-S)算法。该算法采用当前时刻量测和量测噪声先验统计信息构建虚拟量测,通过对虚拟量测采样以及融合提升系统量测信息可靠性,同时,在交互式多模型容积卡尔曼滤波算法框架下应用分布式加权融合的实现结构。在保证滤波精度的同时,大大提高了模型间切换速度。针对系统噪声统计特性未知情况下的非线性状态估计问题,将最大期望(Expectation Maximization,EM)算法应用在非线性状态空间模型中,提出了一种基于最大期望算法的容积RTS平滑(Cubature Rauch Tung Striebel Smoother,CRTSS)算法。为了求出系统的噪声统计特性,首先,利用极大似然准则来构造对数似然函数,然后,通过EM算法和梯度下降法推导出噪声统计估计的递推方程。该算法有效克服了传统非线性滤波算法在系统噪声统计特性未知的情况下滤波精度下降的问题,同时还能够在线估计系统噪声统计特性。