【摘 要】
:
作为半导体材料,氧化铈禁带宽度为3.15 eV,具有出色的紫外屏蔽性能、丰富的氧空位、较低的折射指数与光催化活性,因此,它在紫外线屏蔽以及电磁波吸收领域具有较大的潜在应用。超疏水材料在自清洁、防污、防腐蚀、油水分离等各个领域都有很广泛的应用。受此启发,本论文将超疏水与紫外、微波吸收功能相结合,设计、制备了含铈功能性超疏水复合材料,探索其在紫外线屏蔽和微波吸收材料中的实际应用。本文首先通过原位生长法
论文部分内容阅读
作为半导体材料,氧化铈禁带宽度为3.15 eV,具有出色的紫外屏蔽性能、丰富的氧空位、较低的折射指数与光催化活性,因此,它在紫外线屏蔽以及电磁波吸收领域具有较大的潜在应用。超疏水材料在自清洁、防污、防腐蚀、油水分离等各个领域都有很广泛的应用。受此启发,本论文将超疏水与紫外、微波吸收功能相结合,设计、制备了含铈功能性超疏水复合材料,探索其在紫外线屏蔽和微波吸收材料中的实际应用。本文首先通过原位生长法制备了氧化铈/埃洛石纳米复合物,然后通过化学修饰实现低表面能,制备了既超疏水又有紫外屏蔽性能的复合材料。并使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、热重分析仪(TG)对材料的结构和成分进行了表征,并进一步通过紫外可见吸收光谱(UV-vis)对材料的紫外吸收性能进行了表征,然后测试了复合材料的水接触角与自清洁能力,最后所得复合材料可以有效屏蔽98.7%的UVB和86.0%的UVA,而且同时实现了优异的超疏水功能,其水接触角可达165o,具有优异的自清洁能力。其次,本文通过一步水热反应法,在石墨烯表面构建微纳结构的纳米粒子凸起,制备了铈铁氧体/氧化石墨烯复合材料,通过进一步疏水表面处理,制备了同时具备超疏水和电磁波吸收功能的复合材料,采用SEM、XRD、XPS对材料的聚集态、结构、成分特征进行了分析,还进一步测试了材料的热稳定性,通过矢量网络仪器测试了材料的电磁参数,最后表征了材料的疏水性能。最终所制备的超疏水吸波材料,对微波的最大反射损耗达到了-57 dB,同时拥有5.2 GHz的有效吸收带宽。且在几乎不损耗电磁波吸收能力的情况下水接触角达到了164o,实现了材料的超疏水功能。最后,通过导电网络的引入,借助水热反应制备了铈铁氧体/多壁碳纳米管复合材料,再次借助疏水处理机制制备了功能性超疏水电磁波吸收材料,通过SEM、XRD、XPS对材料的聚集态、结构进行了分析,通过TG和接触角测试仪分别测试了材料的热稳定性和水接触角,通过电磁参数的测试与进一步的计算,对其吸波机理进行了分析,研究结果表明所制备的材料中电损耗部分主要通过导电网络的电导损耗完成,最终该复合材料拥有6.9 GHz的吸收带宽,最大吸收峰值可达-47 dB,且实现了超疏水功能。
其他文献
辐射制冷纤维相比于传统织物,能较好的反射走太阳光并将热量以红外辐射的形式传递到外太空,继而实现降温效果。辐射制冷纤维的降温效果需要相对较高的太阳光谱短波段(200-2500 nm)反射率以及中红外波段大气窗口处(8-13μm)的高发射率。本文采用静电纺丝技术与熔融纺丝技术将Mg11(HPO3)8(OH)6、SiO2等无机粉体与高分子基体材料复合,直接制备了具有优异辐射制冷性能的纤维。通过XRD、S
癌症是全球第二大致死因素,而且发病率呈逐年上升趋势。病理诊断是癌症诊断的“金标准”,病理图像中细胞核的大小、形态和分布与癌症的诊断、评级和预后高度相关。然而,人工勾画病理图像细胞核存在工作量大,可重复性差和经验门槛高等问题。所以,精确的自动化病理图像细胞核分割方法亟待开发。而由于标注图像稀缺,图像颜色分布不均和细胞核重叠分布等问题,病理图像细胞核分割成为一个巨大的挑战。本文在现有的分割方法的基础上
旅游扶贫是国家乡村振兴计划的重要抓手,广西拥有良好的少数民族文化资源及环境优势,具备发展少数民族聚落文化旅游的条件。但在发展文化旅游的过程中,存在建设性破坏,千村一面机械复制的情况。如何基于广西少数民族传统聚落的文化特性,采用有机更新的方式协调文化旅游开发与乡土建筑遗产保护之间的矛盾,最终实现文化旅游的可持续发展成为本论文的研究内容。论文以广西少数民族地区的传统聚落为研究对象,在对文化旅游、有机更
近年来,由于环境破坏日益严重及资源消耗过快等问题,人们逐渐将重心投向海洋。随着世界各国在海底进行各种活动,例如资源探测、军事活动及生物考察,这使水声通信技术得到进一步发展。然而,水声通信的带宽比较窄,这极大限制了信道容量和通信速率。且相比陆上的通信,水声通信环境也更为复杂恶劣,特别容易受到温度、潮汐及盐碱度等因素的影响。而多通道接收和发射技术可以在带宽不变的情况下,成倍提高信道容量和通信速率,并显
随着科学技术的不断发展,许多领域对高功率微波器件的需求不断增大,与此同时,对其性能要求也在不断提高。高功率微波技术的发展也存在新的问题亟待解决,主要是介质窗击穿问题。二次电子倍增是引起高功率微波器件中介质窗击穿的主要原因,因此对二次电子倍增的研究具有重要的实际应用价值。本文通过对二次电子倍增进行建模,建立了含两个载波频率电场的二次电子倍增模型以及切向电场和低气压环境下二次电子倍增模型,研究了电场和
燃料电池作为环境友好型的能源利用形式,是替代传统电源的最佳方式之一。本文设计制造出一种新型的被动式直接甲醇-过氧化氢燃料电池(Direct Methanol-Hydrogen Peroxide Fuel Cell,DMHPFC),它使用过氧化氢代替氧气作为氧化剂,使用还原氧化石墨烯-普鲁士蓝(reduced graphene oxide-supported Prussian Blue,r GO-P
在21世纪,气候变化、能源短缺和环境污染等问题变得严峻,已经威胁到人类生存时间和空间的极限。在联合国气候大会的引导下,世界各国都在朝着碳达峰、碳中和的目标进发,我们目前正处在碳中和的愿景时代下。绿色建筑和绿色建筑评价标准也正跟随着国际形势的改变而变化。对国际绿色建筑及绿色建筑评价领域探查,发现国际上基本以“净零排放”理念为主朝着碳中和的目标进发。对我国《绿色建筑评价标准》2019版进行分析,发现其
介电弹性体(DE)是一种典型的智能材料,其在外加电场激励下可发生大形变,从而实现电能和机械能的相互转换。因其具有形变尺寸大、响应速度快、能量密度高、质量轻、成本低等特点,故在智能机器人、人工肌肉、驱动器、传感与发电等领域具有巨大的应用潜力。在实际应用中,为了提高DE材料的机电转化效率,通过增大驱动电压是最直接有效的方法,但该法亦容易导致基体材料的电击穿。因此,从DE材料的基体选择及网络结构调控出发
与传统的离散刚性机器人相比,连续体机器人拥有连续的主干和多截面结构,具有灵活性高,适应性强的特点。近年来,随着软材料和柔性机械的发展,连续体式柔性机器人逐渐应用于越来越多领域。并且由于应用场景变得更为复杂,人们对连续体机器人的控制性能也提出了更高的要求。因此越来越多的研究人员对连续体机器人控制的相关领域进行研究,并取得了优异的成果。本文对双枢轴柔性关节连续体机器人系统的控制方法进行研究,并建立其运
在智能制造行业中,机器人技术一直在发挥着重要的作用,驱动是机器人的动力系统,驱动方式和布局对其性能有着重要的影响。为了研究直接驱动方式下的机器人控制性能,本文以三关节机械臂为对象,研究无刷直流电机直驱的机械臂稳定快速轨迹跟踪控制。论文主要从以下几个方面展开:首先简要介绍了机器人的驱动方式和无刷直流电机直驱的优点,结合国内外研究现状介绍了无刷直流电机和机械臂的主要控制方法。为了能够实际验证控制效果,