【摘 要】
:
随着机器学习和人工智能等学科的发展,越来越突显出数据的重要性。个人或企业每天会产出或者收集大量的数据,数据的抓取越来越便捷,但是数据质量也逐渐引起人们的重视。其中数据缺失问题常常发生,甚至难以回避。实现算法或提供可靠的决策分析等都依赖于高质量的数据,因此数据填补是一项重要研究内容。本文首先基于自联想神经网络(Auto-Associative Neural Network,AANN)对不完整数据进行
论文部分内容阅读
随着机器学习和人工智能等学科的发展,越来越突显出数据的重要性。个人或企业每天会产出或者收集大量的数据,数据的抓取越来越便捷,但是数据质量也逐渐引起人们的重视。其中数据缺失问题常常发生,甚至难以回避。实现算法或提供可靠的决策分析等都依赖于高质量的数据,因此数据填补是一项重要研究内容。本文首先基于自联想神经网络(Auto-Associative Neural Network,AANN)对不完整数据进行回归建模并填补缺失值。AANN能够实现多缺失模式下的数据填补,具有简洁的网络架构,因此本文基于AANN,并将不完整样本引入建模过程,提出属性互拟合模型。属性互拟合模型重组输出神经元和输入神经元间的数据传输路径,并利用现有数据的训练误差优化模型参数,进而提高自身对不完整数据属性关联的拟合能力。同时,针对模型训练时输入样本中存在缺失值问题,本文将动态调整缺失值,使缺失值变量伴随模型参数迭代更新,通过局部学习和全局逼近的方法增加模型拟合的准确性和缺失值的填补精度。生成对抗网络可以生成和真实数据相同分布的数据,成为深度学习的新热点。生成对抗网络的生成器和AANN具有相同的特点,因此本文考虑将属性互拟合模型和迭代更新缺失值训练方案迁移在生成对抗网络上,提出基于上述两种策略的生成对抗网络填补法。最后,面对中国家庭经济数据库中的缺失值问题,本文使用多种方法对其进行填补,再使用基于层次和密度的聚类算法对填补后的数据集进行聚类和评估。在多个数据集上的实验结果可以证明,属性互拟合模型和迭代更新缺失值策略的训练均能提高填补性能,两者结合的填补结果获得了最多最优的填补结果。在相同的数据集上,基于上述两种策略的生成对抗网络填补法在近一半的情况下填补效果优于属性互拟合填补法。最后,在聚类算法参数相同的情况下,属性互拟合模型和迭代更新缺失值训练方案填补的中国家庭经济数据集,获得了最佳的聚类效果。
其他文献
近些年来,基于深度学习的显著性目标检测算法被广泛提出,并且相较于传统算法获得了极为可观的性能提升。但是,基于深度学习的像素级图像分割任务往往需要精细的人工标注数据。为了减少对人工标注数据的依赖,当前的研究者们推动了一系列基于无监督学习和弱监督学习的显著性目标检测算法的产生。然而这些方法与目前基于全监督学习的方法在性能上依然存在较大的差距。在现实场景应用下,除了绝大多数的弱标签数据之外,还存在少部分
最优传输的理论和方法日益渗透进深度学习等许多工程领域,其Figalli正则性定理揭示了生成模型存在模式崩溃和模式混合的本质原因是传输映射在奇异集处不连续。此外根据对抗样本生成机理的流形假说,奇异集中存在对抗样本,因此计算和研究最优传输映射奇异集变得更加重要。本文主要研究两个问题:一是计算最优传输映射的奇异集,二是利用奇异集生成对抗样本。为了解决上述问题,本文首先基于几何变分方法设计并实现最优传输映
深度学习技术的快速发展使得DNN驱动的自动驾驶技术的研究和部署有了质的突破。然而,虽然自动驾驶汽车已在无人操作的情况下路测行驶数百亿公里,其自动驾驶行为的安全性并不能得到保证——转向角度、安全距离、加速度及制动等因素的微小偏差都可能对安全操纵造成难以预计的结果。因此,自动驾驶汽车的安全性验证技术逐渐成为当前的研究热点和难点。本文以摄像头传感器采集的图像数据作为输入,以正确的转向角度作为输出,研究D
时间序列是大数据的一种重要存在形式,对其利用的方式之一就是通过聚类或分类来挖掘其中的类别信息。时间序列分类(Time series classification,TSC)任务是一项普遍且具有重要意义的课题,常见于工业、金融和医学等领域。然而,时间序列数据存在维度过高和在时间上不对齐的缺点,难以从中获取到对分类任务有益的特征信息。深度学习模型对输入数据具有一定的容错性并能够自动提取特征,在TSC问题
三维重建是包括机器人导航、目标识别、场景理解、动画制作、工业控制、医疗诊断和自动驾驶在内诸多领域所需的核心技术,而深度和光流信息是重建真实三维场景的必备条件。早期方法针对深度或光流进行单独估计,近年陆续出现联合估计深度与光流的不同方法。但联合估计方法依然在泛化性、准确性、完整性等方面存在不足,严重制约该领域进一步发展。因此,为了得到更高精度的深度信息与光流信息,本文提出了一种新的双目深度与光流联合
交通事故是全世界最严重的危害之一,其造成了巨大的财产损失和人员伤亡,其中约95%的事故是由驾驶员不当行为造成的。检测公交车驾驶员异常行为能够对驾驶员的不当行为进行预警,从而保障交通安全。在2019年末爆发的COVID-19中,驾驶员作为公交车上与流动性人员接触最频繁的人,对其佩戴口罩行为进行检测,能够有效降低感染风险,保障其自身和广大乘客的健康安全。实时监测公交车驾驶员,对其不当行为进行及时提醒,
我国制造业正处于向“智造业”转型关键时期,这其中缺陷检测环节必不可少,因此应用现代化机器视觉技术替代耗时耗力的人力工作,是一个重要研究内容。而今在机器视觉领域,深度学习逐渐在一些应用中取代传统视觉算法。但是,根据目前深度学习的发展现状,大量的有效数据是具体应用的必要前提,也是由于这个原因,少样本学习问题是很多场景中面临的最现实的问题。本文的研究课题来源于江西一家生产轴承滚子的企业,针对该企业生产产
近年来元学习问题及其相关应用逐渐成为国内外关注的研究课题,它通过训练模型“学会学习”来提高数据效率、迁移先验知识、节约计算资源等,在少样本学习、强化学习等问题上都有良好的应用前景。当前有诸多不同类型、设计思路的面向元学习的计算策略不断提出,因而如何对元学习问题进行系统的建模以及方法的归纳显得尤为重要。本论文通过引入动态系统以及最佳响应理论,帮助重新建模元学习问题的数学模型,提出一个通用的双层优化统
由于心血管疾病的高致病率和高死亡率特性,它已成为危害人类健康和生命的“头号杀手”。对心血管疾病进行有效诊断和预防尤为重要。近些年,随着深度学习理论和技术的快速发展,借助深度学习对心电图进行特征分析以及病症分类已成为智能医疗健康领域研究的热点问题。但是针对于临床应用,依然存在很多实际问题需要解决:如心电图采集和传输过程中出现各种噪音干扰、缺失;大多数研究都是针对于单导联或是双导联心电图信号进行分类,
近年来,三维深度学习的研究已成为热点,它在自动驾驶、机器人等领域中都得到了广泛的应用。现阶段研究中三维模型数据集样本数量有限,规模无法与二维数据集相比,这也是困扰绝大多数研究者的问题。深度学习任务中数据集的匮乏会直接导致模型的性能出现瓶颈,数据增强技术就是为了应对这个问题而被提出的。在三维点云深度学习领域中,对于数据增强技术的研究还不多,本文主要研究三维点云数据的数据增强算法,提出的方法可以从源头