论文部分内容阅读
以安徽淮北祁南矿低煤级烟煤为主要研究对象,在区域构造背景及演化分析的基础上,开展了原生结构煤的高温高压变形实验,利用SEM-EDX、XRD、ICP-MS、XRF等分析了实验样品中矿物及元素的赋存状态,探讨了煤变形过程中温度和差异应力对矿物变形和元素迁移聚集的影响及其对煤变形的响应特征,取得了以下主要认识和结论:
(1)在区域构造背景及其演化特征分析的基础上,认为燕山早中期徐宿弧形推覆构造的形成是祁南矿煤层变形的关键构造期次,为煤高温高压实验条件的选择提供了依据。根据煤层变形时实际埋深、地压和地温梯度等条件确定了围压、温度和差异应力等煤高温高压变形实验条件,系统进行了顺层挤压应力作用的煤高温高压变形实验。
(2)系统开展了实验变形煤的宏观和微观构造观测与分析。差应力的增加,促进了煤样的变形,样品的变形程度增强,主要表现为显微碎块、碎粒和裂隙等脆性变形程度的增高;温度的升高,降低了样品强度、增强了样品的塑性,样品的碎裂流变韧性变形增强,局部可以出现牵引微褶皱或劈理化带;以方解石矿物为主要研究对象,其对煤的变形具有较好的响应特征。
(3)探讨了煤变形过程中元素的变化规律。研究发现,低温高应力应变环境有利于常量元素Ca、Fe、Mg的聚集,常量元素Ti、K、Al、Si和Na则是在高温高应力应变环境下易聚集;微量元素中,煤变形环境温度越高、差应力越大,越有利于REE元素聚集,高温高应力应变环境有利于Be、Pb、Co元素含量增加,元素Li、Ga在高温低应力应变环境聚集,低温高应力应变环境有利于Sc元素聚集;Ca元素的变化与方解石的变形、变位具有密切联系,二者具有较为一致的变化规律。
(1)在区域构造背景及其演化特征分析的基础上,认为燕山早中期徐宿弧形推覆构造的形成是祁南矿煤层变形的关键构造期次,为煤高温高压实验条件的选择提供了依据。根据煤层变形时实际埋深、地压和地温梯度等条件确定了围压、温度和差异应力等煤高温高压变形实验条件,系统进行了顺层挤压应力作用的煤高温高压变形实验。
(2)系统开展了实验变形煤的宏观和微观构造观测与分析。差应力的增加,促进了煤样的变形,样品的变形程度增强,主要表现为显微碎块、碎粒和裂隙等脆性变形程度的增高;温度的升高,降低了样品强度、增强了样品的塑性,样品的碎裂流变韧性变形增强,局部可以出现牵引微褶皱或劈理化带;以方解石矿物为主要研究对象,其对煤的变形具有较好的响应特征。
(3)探讨了煤变形过程中元素的变化规律。研究发现,低温高应力应变环境有利于常量元素Ca、Fe、Mg的聚集,常量元素Ti、K、Al、Si和Na则是在高温高应力应变环境下易聚集;微量元素中,煤变形环境温度越高、差应力越大,越有利于REE元素聚集,高温高应力应变环境有利于Be、Pb、Co元素含量增加,元素Li、Ga在高温低应力应变环境聚集,低温高应力应变环境有利于Sc元素聚集;Ca元素的变化与方解石的变形、变位具有密切联系,二者具有较为一致的变化规律。