论文部分内容阅读
天体的光谱测量是研究天体的运动状态、化学组成和物理性质的重要手段。伴随着近年来诸多新技术新方法的出现,用于地基天文观测的光谱仪有了很大的发展。目前天体光谱观测主要有三种形式:(1)传统的单个点源光谱观测;(2)多目标低分辨率光谱巡天观测;(3)基于积分视场单元的展源三维成像光谱观测。高色散光谱仪在光谱观测中具有重要的地位。首先,恒星元素丰度、星震学、系外行星搜寻等课题的研究需要高分辨率光谱,这些课题需要光谱仪具有极高的测量精度和仪器稳定性,对高色散光谱仪的设计、加工、安装和调试提出了很高的要求。其次,高色散光谱仪将明亮的天光背景进行了高色散,目标光谱的信噪比受天光背景影响小。随着望远镜口径的增加、自适应光学等技术的应用,望远镜终端仪器在空间域和光谱域都可以获得高信噪比的信号,基于积分视场单元的三维成像光谱仪可以单次曝光同时获取展源目标的空间信息和光谱信息。国际上8~10米级望远镜都配置了三维成像光谱仪,很多中小型望远镜都已经升级或者将要升级三维成像光谱仪。我的研究课题主要分为两个方面:(1)2.16米天文望远镜卡焦高色散光纤光谱仪和山东大学威海天文台阶梯光栅高分辨率光谱仪的性能测试,这些测试对于仪器的安装调试和将来天文学家制定观测计划都有着重要的参考作用;(2)基于2.16米天文望远镜现有的仪器设备进行积分视场单元的升级方案设计,在不改变光谱仪原有功能和结构的基础上扩展望远镜观测模式,提升观测效率。论文的第一章阐述了天文光谱观测的重要意义,第二章主要介绍了2.16米望远镜的卡焦高色散光纤光谱仪,并对光谱仪的测试方案和测试结果进行了详细的介绍。第三章我对山东大学威海天文台1米望远镜阶梯光栅高分辨率光纤光谱仪的构造进行了介绍,给出了性能测试结果,测试表明该仪器的调试安装达到了预期的设计指标。第四章对激光频率梳在天文光谱定标上的应用进行了调研。激光频率梳是天体高色散光谱定标的理想光源,但是由于频谱太密的原因,目前在天文上应用还有一些限制,但是随着激光频谱调制技术的发展,这些限制将很快被克服。第五章,我基于2.16米望远镜现有的光谱仪进行的积分视场单元的设计,提出了两种方案:(1)小视场、高空间分辨率;(2)稍大视场、低空间分辨率。论文最后的第六章总结了天文光学光谱仪的发展现状和将来的发展趋势。