论文部分内容阅读
从第一代磁场驱动型的磁随机存储器(MRAM),到第二代基于自旋转移力矩(STT)效应的磁随机存储器,再到第三代基于自旋轨道力矩(SOT)效应的磁随机存储器,驱动磁性隧道结自由层磁矩翻转的力矩的更新迭代促进着磁随机存储器的阶跃性发展。最近几年,自旋轨道力矩效应的出现提供了一种低能耗、高速度的方式调控磁性薄膜的自发磁化状态。但是,在构建具有垂直磁各向异性的磁随机存储器时,实现在零外加磁场的条件下对磁随机存储器的基本构成单元──磁性隧道结的全电学调控仍面临原理性的科学难题。本论文着眼于该问题,并选题为“磁异质结中基于自旋轨道力矩的全电学磁矩翻转调控研究”,主要包括以下四个方面的研究工作:(1)制备了核心结构为Pd/Co/IrMn且具有垂直磁各向异性的磁性薄膜,通过微纳加工,将样品加工成霍尔条,这样就可以通过探测霍尔条的反常霍尔电阻表征磁性层的平均垂直磁矩。实验证明反铁磁材料IrMn能够同时提供自旋轨道力矩和面内的交换偏置场,实现零场下垂直Co层磁矩的确定性翻转,测得IrMn产生的面内交换偏置场为1.8 mT,并且零场下自旋轨道力矩驱动磁矩翻转的临界电流密度约为2.2×107A/cm2。(2)在垂直-垂直耦合的CoFeB/Ta/CoFeB人工反铁磁结构中,我们实验研究了在中间层Ta产生的自旋轨道力矩和层间耦合效应作用下,该人工反铁磁结构的磁矩翻转特性。实验观察到垂直磁矩的翻转行为如下:在施加沿电流方向的面内偏置场时,耦合着的两层CoFeB的垂直磁矩同时发生翻转。结合谐波测量和翻转实验,我们估算出在CoFeB/Ta/CoFeB人工反铁磁结构中电流产生类场力矩和类阻尼力矩的效率分别为0.74 mT/(MA/cm2)和0.60mT/(MA/cm2),即施加特定的电流,产生的类场力矩是类阻尼力矩1.24倍。通过估算,厚度为1.3 nm的超薄Ta层的有效自旋霍尔角约为-0.158。同时,实验证明了在该人工反铁磁结构中由于缺少反演对称性破缺,不可能实现零场下磁矩的确定性翻转。(3)在制备出的垂直-面内耦合的CoFeB/Ta/CoFeB结构中,由于中间层Ta可以提供的层间耦合效应和自旋霍尔效应,垂直磁矩会感受到面内磁矩产生的面内有效场的作用。实验结果表明,制备出的垂直-面内耦合的磁结构中面内层具有面内的单轴各向异性而垂直层的易轴并非精确地沿着z轴,而是与z轴形成了大小为10o的夹角。在该垂直-面内耦合的CoFeB/Ta/CoFeB结构中,我们观察到了两种全电学调控的自旋轨道力矩驱动磁矩翻转的模式,分别是Z型和T型翻转模式。T型翻转模式的特点是电流沿着面内难轴方向施加,此时电流既垂直于垂直磁矩也垂直于面内磁矩,实验和理论均表明:难轴电流能够同时翻转面内层和垂直层的两层薄膜的磁矩,并且磁矩翻转的极性不受外加磁场的调控。在Z型翻转模式,电流沿面内易轴方向施加,在面内电流产生的自旋轨道力矩的驱动下,只有垂直层的磁矩发生翻转而面内层不发生翻转,并且垂直磁矩翻转的极性会受到沿电流方向施加的面内偏置磁场的调控(4)制备了薄膜结构为Ta(8)/Co40Fe40B20(2)/Ta(1.3)/Co40Fe40B20(0.6)/MgO(2.5)/Co40Fe40B20(1.2)/Ta(5)/Ru(5 nm)的垂直磁性隧道结,退火后,该磁性隧道结的自由层形成了垂直-面内耦合的CoFeB/Ta/CoFeB结构。通过微纳加工,制成了具有椭圆形结区并且其尺寸分别为5μm(短轴)-10μm(长轴)、5μm-15μm、5μm-20μm、10μm-20μm和10μm-30μm的微米级磁性隧道结,实验测得制备的磁性隧道结的隧穿磁电阻效应为43%50%。通过施加面内电流产生自旋轨道力矩,我们实现了磁性隧道结自由层磁矩的全电学调控,并且在面内偏置磁场的帮助下,系统地研究了磁性隧道结自由层磁矩的翻转特性。