基于游标效应的光纤双参量传感器研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:c410504
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
盐度和温度是海洋监测的两个重要参数,可广泛应用于海洋科学研究、海洋资源调查与开发、海洋环境监测与保护等领域。近几十年来,光纤传感器由于具有体积小、响应速度快、成本低、抗腐蚀、灵敏度高等优点,越来越受到人们的关注。许多类型的光纤传感器已被提出用于折射率和温度测量,例如光纤光栅、光纤干涉仪、光纤表面等离子体共振等。游标效应已被报道是一种提高光纤传感器灵敏度的有效方法。然而,目前基于游标原理的报道工作只能提高单参量检测的灵敏度。因此利用游标效应开发具有高灵敏度的双参量测量是值得研究的。本文针对目前光纤传感器在双参数同时测量存在的不足,提出基于游标效应提高光纤传感器灵敏度的测量方法。与之前报道的游标光纤传感器不同,本文提出组合游标混合干涉仪结构,对双参量测量的灵敏度都进行放大,并且解决了双参量测量中的交叉串扰问题。本文的主要研究内容如下:(1)介绍了光纤法布里-珀罗干涉仪(FPI)和光纤Sagnac干涉仪(FSI)的理论模型,从理论上推导了级联游标效应和并联游标效应的光谱特点,从数学上论证了游标效应的包络周期与光纤传感器灵敏度放大倍数之间的关系,为后续的光纤传感实验提供理论基础。(2)结合理论仿真分析了FPI对折射率的响应以及FSI对温度的响应。分析比较了三种FPI制作方法的优劣,搭建实验环境进行折射率和温度实验,实验结果显示FPI的波长偏移量与折射率变化量成线性关系。在1.333-1.34的折射率范围内,开腔FPI传感器折射率灵敏度为1108.28 nm/RIU。一段保偏光纤两端熔接上两段单模光纤制成Sagnac环,搭建了温度传感系统进行实验,温度敏感Sagnac干涉仪在28-30℃范围内实现了-1.38 nm/RIU的温度灵敏度(3)最后提出了一种由FSI、闭腔FPI和开腔FPI组成的混合光纤干涉仪,用于产生组合游标效应。通过调整FSI的保偏光纤(PMF)长度,将自由光谱范围(FSR)与并联参考FPI的FSR相匹配,以产生第一游标效应,其光谱用于匹配传感FPI光谱以获得第二个游标效应。在第一和第二游标效应中分别实现了明显的较低和较高光谱包络,即组合游标光谱。容易理解的是,由于开腔FPI的特性,上包络只对折射率敏感,而下包络不受影响,并利用FSI来检测温度。更重要的是,可以同时显着提高折射率和温度的传感灵敏度,而不会产生串扰。实验结果表明,折射率灵敏度为-19844.67nm/RIU,温度灵敏度为-46.14 nm/℃,因此该系统可用于温度和折射率的高精度同时测量。
其他文献
氢气不仅热值高,而且零污染,是理想的清洁能源之一。电解水制氢是一种低成本、没有污染、操作简便的制氢方法。但是电解水制氢需要催化剂来辅助提高效率。目前,非贵金属催化剂逐渐取代昂贵的贵金属催化剂。其中,过渡金属硫化物催化剂因其价格低、制备简单、催化性能高的优点,正在发挥更大的作用。本文设计并制备新型过渡金属硫化物二维二硫化铼(ReS2)催化剂,探究其在碱性条件下对析氢反应(HER)的催化性能。首先,利
学位
铁电功能陶瓷拥有优良的电、声、热、力、光等多方面的物理特性。以陶瓷块体作为介质层的电容器遍布于各种印刷电路板之中。如何实现瓷片电容的高储能密度成为眼下研究的热点。目前,铅基体系的介质层被广泛的应用于商业之中。然而出于对环境以及人类健康的考虑,寻求高储能密度的无铅基介质层成为一个重要的分支。针对目前对于高储能密度陶瓷的需求、环境可持续发展的理念以及陶瓷电容器的实用性方面出发,本文着眼于无铅基陶瓷体系
学位
认知无线电(Cognitive Radio,CR)技术是解决当前频谱资源利用率低的一种实用技术,而频谱感知技术是认知无线电网络中最关键的一环。目前国内外研究所提出的频谱感知算法有许多种,但在信噪比(Signal-Noise Ratio,SNR)较低的环境下,大部分算法都会有较大的性能衰减,部分算法甚至在该环境下不能承担频谱感知的任务。因此,为了提高在低信噪比环境下的频谱感知性能,本文运用信息几何中
学位
光子器件由于经典衍射极限的限制导致其在尺寸上的发展达到了瓶颈。表面等离子体激元(Surface Plasmon Polaritons,SPPs)是在亚波长范围内调控光的方式,它的优点是能够突破经典衍射极限,为光子器件芯片的集成化带来了希望。金属-介质-金属(Metal-insulator-metal,MIM)波导凭借其尺寸小、易激发和结构简单等优势,受到了学者们的广泛关注。Fano共振是离子结构中
学位
混沌因为其具有内在的随机性和初值敏感性被广泛应用于密码设计,由此产生的混沌密码学在数十年间有着快速的发展。但是在信息安全形势严峻的当下,混沌密码学仍然显得发展不足。一方面,大量的混沌密码在设计上有明显漏洞,在混沌系统具有较高的混沌特性的情况下依然容易遭受攻击。另一方面,混沌密码中的高维混沌系统在数字化以后具有较大的运算量,对于一般的计算机处理器而言有些不堪重负,同时加解密速度也无法满足需要。因此,
学位
CuZnSn(S,Se)4(CZTSSe)属于直接带隙p型半导体材料,具有良好的光电性能,吸收系数高达10~4cm-1数量级,其禁带宽度为1.0~1.5eV,接近太阳能电池吸收层理想带隙。此外,CZTSSe所含元素在地壳的含量丰富且安全无毒。使用柔性金属Mo箔作为CZTSSe的衬底具有成本低、延展性好以及与CZTSSe薄膜兼容的热膨胀系数等优点。然而,CZTSSe的高温硒化过程中大量的Se原子穿过
学位
随着移动用户和无线设备的急剧增长,以及诸如增强/混合/虚拟现实、工业自动化、车联网等新的无线应用的迅速出现,在即将到来的万物互联时代,现有5G技术在支持大规模以及无处不在联接的高需求时可能会遇到容量和性能的限制。此外,实现极高容量、超可靠和低时延无线通信的一个最终瓶颈在于随机且基本不可控的无线传播环境,其造成了不希望出现的信道衰减和信号失真,这对无线系统的性能是不利的。近年来,智能反射面作为有望解
学位
迄今为止,新型冠状病毒疫情给全球带来了巨大且日益增加的影响,新冠病毒的变异也为疫苗设计带来困难。老药新用原则对于治疗新冠肺炎患者和设计候选药物有重要意义。通过该原则,可以利用免疫学和药物分子设计方法在已有的抗新冠肺炎病毒药物中筛选出候选药物,而采用定量构效关系研究分子结构与活性的关系,可以为针对新型冠状病毒的疫苗设计提供思路。目前,关于新型冠状病毒研究的现有工作集中在病毒传播的流行病学分析,病毒的
学位
近年来,随着无线通信网络的发展,联网设备的数量不断增加,对于一个基站而言,如何在保证通信质量的情况下服务更多的设备成为一个迫在眉睫的问题。过去十年中,在无线通信发展的推动下,研究人员对波束形成产生了浓厚的兴趣。在无线通信中,多天线技术已成为适应用户数量爆炸性增长和满足高数据率的服务需求的关键技术之一。多天线的一个好处就是基站可以对需要发射的信号进行波束赋形,也称波束形成技术。波束形成技术是一种在存
学位
2019年以来,科学家们通过不断改进钙钛矿太阳能电池的制备工艺和结构,使钙钛矿太阳能电池(PSCs)的效率从最初的3.9%提高到目前的25.7%。目前,高效PSCs采用了昂贵的空穴传输层(HTM)和贵金属Au电极,且需要在充满惰性气体的手套箱中制备,阻碍了PSCs的商业化进程。因此,本文利用钙钛矿材料可以同时传输电子和空穴的独特优势,在空气环境下,分别制备以混合阴离子MAPb(I1-xClx)3和
学位