论文部分内容阅读
生物大分子如DNA、蛋白质存在于生物体内与生命密切相关。对生物大分子的识别在信号转导、基因组复制、蛋白组学、医疗诊断以及靶向药物的研发等方面都有着重要的意义。生物大分子中含有许多金属结合位点,所以金属配合物能与它们相互作用,并促成多种不同的生物应用。基于其优越的发光特性,镧系配合物作为生物大分子的荧光探针引起越来越多的关注。铂类抗癌药物通过对DNA碱基的靶向结合表现出高的抗癌活性,然而在与DNA作用之前,它们也有可能与其他许多生物大分子作用。因此铂类配合物也可能会与其他疾病相关的蛋白质相互作用成为潜在的治疗药物。本论文包括五章内容,主要通过引入新型的多功能铽和、或铂配合物来识别DNA和蛋白质并探索了它们的生物应用。第一章,对配合物生物大分子的识别做了综述,主要包括DNA和蛋白质的结构以及它们与配合物相互作用的活性位点,镧系配合物的荧光优势以及对生物大分子的识别,铂类抗癌药物与DNA或蛋白质的相互作用。第二章,设计并合成了铽配合物(TbL),并能在水溶液中生理pH条件下作为人血清白蛋白(HSA)的时间分辨荧光探针。TbL由铽的发光中心和多齿配体组成,其中二乙基三胺五乙酸(DTPA)作为发光的报告基团,两个2-甲基-5-硝基咪唑(甲硝唑)基团作为探针基团。TbL通过多元作用与HSA的氨基酸残基相互作用后荧光显著地增强,并且表现出对HSA比其他的蛋白质或者酶更高的选择性。此外,该探针还能检测HSA因抗癌药物顺铂以及天然配体磷脂造成的构型上的改变。硝基是荧光增强中不可或缺的因素,它与HSA中的氨基酸残基形成的氢键则是最主要的相互作用。除了硝基,HSA适当的空间构型、配位水与HSA表面上的功能基团之间的氢键作用、甲硝哗对HSA高的亲和性都对识别起到一定协同作用。基于其极好的水溶性、近生理的实验条件以及高的选择性,TbL有可能成为检测药物与HSA相互作用的方便工具。第三章,我们更深入地研究了TbL在DNA体系中的荧光变化。TbL表现出对单链寡聚核苷酸和小牛胸腺DNA中的腺嘌呤以及鸟嘌呤碱基的选择性荧光增强。有趣的是,TbL对单磷酸核苷中的嘌呤和嘧啶并没有任何荧光响应。基于上述实验结果,TbL能够选择性的对甲基磺酸甲酯(MMS)以及酸性条件造成的DNA脱嘌呤给出快速、灵敏的荧光响应。由于硝基咪唑基团对鸟嘌呤、腺嘌呤碱基优先结合的特性,TbL能够通过一定的插入作用与DNA的嘌呤碱基选择性结合。硝基同样是TbL荧光增强的主导因素。由于它好的选择性、高的灵敏性和即时性,TbL可能用来即时检测与脱嘌呤相关的DNA损伤以及修复。第四章,设计并合成了新型的异三核铽-铂配合物(TPC)作为鸟嘌呤碱基以及DNA的鸟嘌呤N7位修饰的时间分辨荧光探针。该探针由铽的荧光发光中心以及两个单功能铂基团组成,其中多功能的多齿配体作为桥联基团。对比其他碱基核苷,TPC展示出了对单磷酸鸟嘌呤核苷(GMP)明显的选择性,并且在反应后伴随着荧光的显著增强。此外,该探针还能够检测在单链寡聚核苷酸以及小牛胸腺DNA中的鸟嘌呤碱基。通过电喷雾质谱和核磁共振波谱研究了其荧光增强的机理,并发现铂单元对鸟嘌呤的N7的高选择性结合造就了铽荧光的选择性增强。更有意义的是,TPC还能够检测在水溶液中由MMS或顺铂造成的DNA的鸟嘌呤N7修饰。考虑到其高的灵敏性、极好的选择性、优秀的水溶性、较宽的pH适用范围,TPC可能有效地检测鸟嘌呤碱基以及抗癌药物或者致癌物质造成的DNA的鸟嘌呤N7位修饰。第五章,设计并合成了两个含有cyclen大环的双功能含铂螯合剂(PC1、PC2),作为金属离子诱导β-淀粉样蛋白(Aβ)聚集的新型抑制剂。PC1和PC2包含两个部分,其中cyclen作为金属离子的螯合单元,Pt(bipyridine)Cl2作为Aβ的靶向结合单元。通过串联质谱以及核磁共振氢谱研究了含铂螯合剂与Aβ聚集体的相互作用发现,PC1和PC2中的铂中心与Afβ40中的组氨酸残基(His-14或者-13)通过配位作用相互结合。并通过比浊度、硫磺素-T荧光光谱以及BCA蛋白试剂盒考察了螯合剂对由Zn2+和Cu2+诱导的Aβ聚集的抑制作用。研究发现,PC1和PC2要比不含金属配位基团的大环螯合剂(cyclen)有更好的抑制Aβ聚集的能力,而且作为对照,相关的抗癌药物顺铂并不能抑制Aβ聚集。并且PC1和PC2能降低Cu-Afβ40造成的活性氧的产生,以及Aβ聚集体在小鼠大脑皮层神经元细胞中的毒性。此外,它们还能够降低转基因小鼠脑组织匀浆中的Aβ聚集。该含铂螯合剂代表了一种新型的潜在抗阿尔兹海默症药物的螯合剂。