论文部分内容阅读
高铁是复杂巨系统,任何子系统和设施、设备发生故障都可能危及高铁的运行安全。面向移动装备、基础设施状态、运行环境等高铁运行安全的图像视频检测监测系统以其结果直观的特点在全路广泛应用,保障高速铁路的运行安全。虽然现有的检测监测系统与图像数据应用水平可以满足高速铁路基础设施设备状态和运行环境安全检测监测的需求,但它们分散部署于路网的不同地域,目前还处于人机结合判读并核查安全隐患及故障的本地应用阶段,需要投入大量的人工,费时费力。充分利用国铁集团主数据中心、铁路数据服务平台等路网中已存在的信息基础设施资源,解决好面向高铁运行安全的智能图像识别问题,实现高铁运行安全图像检测监测系统的智能化升级,将大幅提升工作效率,降低工作成本。近年来,深度学习、边缘计算、云计算等信息技术的优势汇聚,促进了人工智能正由技术研发走向行业应用。深度学习等人工智能技术与面向高铁运行安全的图像视频场景相结合,可以对高速铁路设施设备的运行状态智能识别和运行环境的实时检测监控,实现基于图像的高铁运行安全隐患排查、缺陷检测、故障诊断。本文将重点研究高铁设施设备运行安全图像的智能识别方法及应用,主要取得了以下创新性的成果:(1)基于深度主动半监督学习的高铁运行安全图像半自动标注方法。针对利用深度学习方法进行海量高铁运行安全图像智能识别过程中图像标注效率低的问题,提出了基于深度主动半监督学习的高铁运行安全图像半自动标注方法,以连续迭代范式的方式将主动学习和半监督学习引入卷积神经网络的微调过程中,让深度卷积神经网络通过增量的方式对高铁运行安全图像的特征进行学习,可以满足高铁运行安全图像数据的快速标注。将上述方法应用于动车组运行安全图像数据的标注问题,将动车组运行图像的语义标注问题转化为动车组结构子系统分类和零部件目标检测问题,将标注任务分解为粗标注和精细标注两个阶段,提出一种面向动车组零部件分类层级结构的两阶关联的基于深度主动半监督学习的动车组运行安全图像半自动标注方法,量化了数据标注量与目标任务表现之间的关系,利用较少的标注数据量可以在目标任务上获得较高的性能表现。(2)基于卷积神经网络的动车组运行安全图像缺陷检测方法。针对目前TEDS系统利用图像匹配方法自动识别缺陷精度低的问题,提出基于卷积神经网络的动车组运行安全图像缺陷检测与分割模型,分析动车组运行安全图像及其缺陷形态的特征,优化了基于区域的目标检测模型,采用可改变感受野的可变形卷积(DCN)适应缺陷形态的多样性,采用在线困难样本挖掘(OHEM)筛选出困难样本重新输入预测网络以平衡正负样本的比例,克服了缺陷形态尺寸变化多样和复杂背景下正负样本不平衡的困难。(3)基于两阶级联轻量级卷积神经网络的高铁接触网悬挂紧固件缺陷识别方法。针对高铁接触网悬挂运行状态监测图像中小目标紧固件缺陷检测问题,分析了接触网悬挂图像的特点,对比接触网悬挂紧固件缺陷检测与自然图像目标检测的不同,将紧固件缺陷检测问题转换为紧固件检测和运行状态精细识别两个过程解决,提出基于两阶级联轻量级卷积神经网络的紧固件缺陷识别方法。首先,设计了由轻量级的特征提取网络、全局注意力模块、相互增强的分类器和检测器组成的紧固件检测模型,实现目标紧固件实例的高效检测;然后,搭建轻量级的多标签分类网络,进行紧固件运行状态的精细识别,实现紧固件缺陷的识别。(4)高速铁路运行安全图像智能识别应用总体架构。分析路网中高速铁路运行安全图像检测监测信息系统的应用现状及部署特点,提出“边缘+云”的高铁运行安全图像智能识别应用总体架构,在统一的铁路数据服务平台基础之上,构建了高铁运行安全图像智能识别平台的逻辑架构和功能架构,并结合业务范围设计了数据流转和边缘计算的流程,通过典型的TEDS图像检测应用系统具体阐述智能识别应用总体架构,并详细设计了TEDS系统图像智能识别的应用架构、系统架构和系统智能识别应用的软件流程。