论文部分内容阅读
精密光学系统在航空航天、高端装备制造等高精尖领域广泛应用,对我国科技水平和综合国力发展有重要意义。光学元件作为光学系统的基础单元,其加工质量是制约系统性能的主要因素,因而对光学元件面形精度的检测要求越来越严格。以极紫外光刻机为例,要求投影光刻物镜中单个光学元件面形精度高达亚纳米量级,然而作为当前行业检测标准的ZYGO干涉仪的测量精度也只能达到λ/40(λ=632.8nm)。因此,点衍射干涉技术应运而生,其凭借微孔截面衍射产生近乎理想的球面参考波,打破了传统干涉方法中标准参考镜加工精度对系统检测精度的限制,从而在理论上有望实现亚纳米量级的面形测量精度。然而,该技术在实施中尚存在位相解调精度不高、低反镜光强对比度不足以及非共路干涉成像误差等问题,影响了其理论精度的实现。本文针对上述问题,进行了针孔点衍射干涉波前检测系统高精度误差校正研究。建立了点衍射干涉检测系统方案,对其中产生高质量点衍射球面波的针孔和纳米线波导的关键结构参数进行研究分析和优化设计。基于自编光线追迹程序建立点衍射干涉(Point Diffraction Interferometry,PDI)系统仿真模型,为下文系统优化的研究奠定理论基础。讨论了基于Gram-Schmidt正交化的Zernike波前拟合技术,实现离散采样点的位相重构。由于移相器不准和环境扰动等原因会引入相移误差,从而导致位相重构准确度下降,针对该问题,提出了基于线性相关的自校正位相解调算法(Self Phase Retrieval Algorithm Based on Linear Correlation,LCA)。通过求解相关系数来搜索差分强度图的最优线性组合系数,进而利用线性组合系数求得相移量和待测位相。该算法无需预知相移量,降低了对移相器性能和环境稳定性的要求。相较于其他自校正算法,整个位相恢复过程没有复杂的数学变换和迭代运算,可快速准确地进行高精度位相重建。提出了基于偶次非球面四分之一波片(Even Aspheric Quarter-Wave Plate,EAQWP)的偏振点衍射干涉对比度增强技术,利用偏振器件变换光束偏振态,解决低反射率球面镜检测时对比度不足的问题。普通波片通常应用在平行光路中,但在大数值口径球面波光路中会引入畸变像差,因此优化设计了凸面为偶次非球面的平凸透镜基底波片,并对其进行了详细的波像差分析。针对该波片位姿误差引入的波像差,建立了差分复原模型进行校正。校正后的波片安装于设计的理想位置,测量不同数值孔径待测镜时无需重复装调,大大降低了实验操作的繁琐性,并且避免了由此引入的随机误差。针对非共路干涉中引入的成像镜像差问题,提出了无成像镜的点衍射干涉技术(Free-Lens Point Diffraction Interferometry,FLPDI)和逆向衍射波前重构算法。去除成像镜后,待测镜和CCD像面的关系由共轭成像变为衍射成像,干涉图中有明显的衍射环,已不能反映真实的待测镜面形分布。因此,建立了基于虚拟透镜的衍射波追迹模型对衍射成像进行理论推导,进而通过逆向衍射准确追迹到待测镜面的复振幅,重构出全口径无衍射效应的待测镜面形。该方法利用虚拟透镜去除球面波位相因子,直接采用平面波角谱理论进行衍射传输,解决了球面波衍射传输过程中采样难的问题。建立了基于差分泽尼克系数矢量的系统原理误差校正方法,并对CCD倾斜误差进行了理论分析和控制。对上述研究内容进行了实验验证。首先,对直条纹、圆条纹和复杂条纹的干涉图进行位相解调,得到的残余误差RMS值分别为0.0296rad、0:0617rad和0.0314rad,验证了位相解调算法的准确性。然后,利用差分复原模型对设计波片的位姿误差进行校正,将轴向位置偏差、垂轴偏差和倾斜偏差控制在0.017mm、0.004mm和0.660’以内时,可实现残余误差PV值优于0.001λ。对反射率0.04、数值孔径0.5的球面镜进行实验,测量结果与ZYGO干涉仪对比的残余误差PV和RMS值仅为0.0167λ和0.0025λ,验证了偏振对比度增强技术可有效提高大数值孔径低反镜面形的检测精度。最后,去除实验系统成像镜,对NA0.05的球面镜进行测量,应用逆向衍射算法追迹到去除衍射效应的待测镜面形,其PV为0.1825λ,RMS值为0.0300λ,相较于逆向追迹前的位相分布有明显减小,将其和ZYGO测量的结果比较,面形形状取得了很好的吻合。